A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.
In this research a theoretical study has been carried out on the behavior and strength of simply supported composite beams strengthened by steel cover plate taking into consideration partial interaction of shear connectors and nonlinear behavior of the materials and shear connectors. Following the procedure that already has been adopted by Johnson (1975), the basic differential equations of equilibrium and compatibility were reduced to single differential equation in terms of interface slip between concrete slab and steel beam. Furthermore, in order to consider the nonlinear behavior of steel, concrete and shear connectors, the basic equation was rearranged so that all terms related to materials are isol
... Show MoreThis article studied some linear and nonlinear optical characteristics of different pH solutions from anthocyanin dye extract at 180 oC from red cabbage. First, the linear spectral characteristics, including absorption and transmittance in the range 400-800 nm for anthocyanin solution 5% v/v with different pHs, were achieved utilizing a UV/VIS spectrophotometer. The experimental results reveal a shift in the absorption toward the longer wavelength direction as pH values increment. Then, the nonlinear features were measured using the Z-scan technique with a CW 532 nm laser to measure the nonlinear absorption coefficient through an open aperture. A close aperture (diameter 2 mm) calculates the nonlinear refractive index. The open Z-scan sh
... Show MoreThis work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.
The ground state density distributions and electron scattering Coulomb form factors of Helium (4,6,8He) and Phosphorate (27,31P) isotopes are investigated in the framework of nuclear shell model. For stable (4He) and (31P) nuclei, the core and valence parts are studied through Harmonic-oscillator (HO) and Hulthen potentials. Correspondingly, for exotic (6,8He) and (27P) nuclei, the HO potential is applied to the core parts only, while the Hulthen potential is applied to valence parts. The parameters for HO and Hulthen are chosen to reproduce the available experimental size radii for all nuclei under study. Finally, the CO component of electron scattering charge form factors are also investigated. Unfortunately, there is no
... Show MoreThe objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the <
... Show MoreA field study aimed to improve administrative performance of the Heads of Departments in Wasit University in light of the administrative functions, a questionnaire constructed was c of 38 items, as have been applied during the academic year 2014/2015 to a group of experts from the deans and assistants, professors and heads of departments using the Delphi method by two rounds the adoption rate of 90% and an agreement was numbered 30 experts and study reached important results have been analyzed and discussed according to fields of study, a planning, organization and direction.
In this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.