A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.
It is general known that any design in various fields such as the interior design in the field of spaces interior for the public and specific buildings that is concern about the use of humans resident , as well as other considerations relating to the organization of design elements and lines of locomotors activity and the validity of appropriate receiving to provide comfort and achieve the requirements of the position in the space of restaurants field of research.
The researcher choose the title of this study (processors design career in public spaces), the analytical study of the spaces of restaurants, as one of the public spaces that are running in their general environment of people in various strata , ages and other levels , whic
The nuclear size radii, density distributions and elastic electron scattering charge form factors for Fluorine isotopes (17,19,20,24,26F) were studied using the radial wave functions (WF) of harmonic-oscillator (HO) potential and free mean field described by spherical Hankel functions (SHF) for the core and the valence parts, respectively for all aforementioned isotopes. The parameters for HO potential (size parameter ) and SHF were chosen to regenerate the available experimental size radii. It was found that using spherical Hankel functions in our work improved the calculated results quantities in comparison with empirical data.
ان الغرض من هذا البحث هو المزج بين القيود الضبابية والاحتمالية. كما يهدف الى مناقشة اكثر حالات مشكلات البرمجة الضبابية شيوعا وهي عندما تكون المشكلة الضبابية تتبع دالة الانتماء مرة دالة الاتنماء المثلثية مرة اخرى، من خلال التطبيق العملي والتجريبي. فضلا عن توظيف البرمجة الخطية الضبابية في معالجة مشكلات تخطيط وجدولة الإنتاج لشركة العراق لصناعة الأثاث، وكذلك تم استخدام الطرائق الكمية للتنبؤ بالطلب واعتماده
... Show MoreBackground:
Multiple sclerosis is a chronic disease believed to be the result of autoimmune disorders of the central nervous system, characterised by inflammation, demyelination, and axonal transection, affecting primarily young adults. Disease modifying therapies have become widely used, and the rapid development of these drugs highlighted the need to update our knowledge on their short- and long-term safety profile.
Objective:
The study aim is to evaluate the impact of disease-modifying treatments on thyroid functions and thyroid autoantibodies with subsequent effects on the outcome of the disease.
Materials and Methods:
A retro prospective study
... Show MoreCryptography is the process of transforming message to avoid an unauthorized access of data. One of the main problems and an important part in cryptography with secret key algorithms is key. For higher level of secure communication key plays an important role. For increasing the level of security in any communication, both parties must have a copy of the secret key which, unfortunately, is not that easy to achieve. Triple Data Encryption Standard algorithm is weak due to its weak key generation, so that key must be reconfigured to make this algorithm more secure, effective, and strong. Encryption key enhances the Triple Data Encryption Standard algorithm securities. This paper proposed a combination of two efficient encryption algorithms to
... Show MoreIn this paper, a compression system with high synthetic architect is introduced, it is based on wavelet transform, polynomial representation and quadtree coding. The bio-orthogonal (tap 9/7) wavelet transform is used to decompose the image signal, and 2D polynomial representation is utilized to prune the existing high scale variation of image signal. Quantization with quadtree coding are followed by shift coding are applied to compress the detail band and the residue part of approximation subband. The test results indicate that the introduced system is simple and fast and it leads to better compression gain in comparison with the case of using first order polynomial approximation.
This paper demonstrates a new technique based on a combined form of the new transform method with homotopy perturbation method to find the suitable accurate solution of autonomous Equations with initial condition. This technique is called the transform homotopy perturbation method (THPM). It can be used to solve the problems without resorting to the frequency domain.The implementation of the suggested method demonstrates the usefulness in finding exact solution for linear and nonlinear problems. The practical results show the efficiency and reliability of technique and easier implemented than HPM in finding exact solutions.Finally, all algorithms in this paper implemented in MATLAB version 7.12.