Number theorists believe that primes play a central role in Number theory and that solving problems related to primes could lead to the resolution of many other unsolved conjectures, including the prime k-tuples conjecture. This paper aims to demonstrate the existence of this conjecture for admissible k-tuples in a positive proportion. The authors achieved this by refining the methods of “Goldston, Pintz and Yildirim” and “James Maynard” for studying bounded gaps between primes and prime k-tuples. These refinements enabled to overcome the previous limitations and restrictions and to show that for a positive proportion of admissible k-tuples, there is the existence of the prime k-tuples conjecture holding for each “k”. The significance of this result is that it is unconditional which means it is proved without assuming any form of strong conjecture like the Elliott–Halberstam conjecture
In this article, we introduced a new concept of mappings called δZA - Quasi contractive mapping and we study the K*- iteration process for approximation of fixed points, and we proved that this iteration process is faster than the existing leading iteration processes like Noor iteration process, CR -iteration process, SP and Karahan Two- step iteration process for 𝛿𝒵𝒜 − quasi contraction mappings. We supported our analytic proof by a numerical example.
The paper aims at initiating and exploring the concept of extended metric known as the Strong Altering JS-metric, a stronger version of the Altering JS-metric. The interrelation of Strong Altering JS-metric with the b-metric and dislocated metric has been analyzed and some examples have been provided. Certain theorems on fixed points for expansive self-mappings in the setting of complete Strong Altering JS-metric space have also been discussed.
Chemical compounds, characteristics, and molecular structures are inevitably connected. Topological indices are numerical values connected with chemical molecular graphs that contribute to understanding a chemical compounds physical qualities, chemical reactivity, and biological activity. In this study, we have obtained some topological properties of the first dominating David derived (DDD) networks and computed several K-Banhatti polynomials of the first type of DDD.
We have studied some types of ideals in a KU-semigroup by using the concept of a bipolar fuzzy set. Bipolar fuzzy S-ideals and bipolar fuzzy k-ideals are introduced, and some properties are investigated. Also, some relations between a bipolar fuzzy k-ideal and k-ideal are discussed. Moreover, a bipolar fuzzy k-ideal under homomorphism and the product of two bipolar fuzzy k-ideals are studied.
Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThe notion of interval value fuzzy k-ideal of KU-semigroup was studied as a generalization of afuzzy k-ideal of KU-semigroup. Some results of this idea under homomorphism are discussed. Also, we presented some properties about the image (pre-image) for interval~ valued fuzzy~k-ideals of a KU-semigroup. Finally, the~ product of~ interval valued fuzzyk-ideals is established.
In this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorp
... Show MoreBackground: Calcaneus is a spongy cancellous bone with rich blood supply , its fracture heals more rapidly providing no occurrence of infection and soft tissue injury around ,no gross malposition of fragments. The associated pain leads to a major impairment in life quality. The aim of treatment for calcaneal fractures is the decrease of pain and rebuilding of walking ability for patients with normal foot shape and the ability to wear normal foot wear. To reduce complications, a minimally invasive technique for the treatment of displaced intra-articular fractures of the calcaneus was preferred to use.
The purpose of this study was to determine whether the closed reduction and percutaneous K. wire fixation of displ
... Show MoreLet R be a Г-ring, and σ, τ be two automorphisms of R. An additive mapping d from a Γ-ring R into itself is called a (σ,τ)-derivation on R if d(aαb) = d(a)α σ(b) + τ(a)αd(b), holds for all a,b ∈R and α∈Γ. d is called strong commutativity preserving (SCP) on R if [d(a), d(b)]α = [a,b]α(σ,τ) holds for all a,b∈R and α∈Γ. In this paper, we investigate the commutativity of R by the strong commutativity preserving (σ,τ)-derivation d satisfied some properties, when R is prime and semi prime Г-ring.