The general health of palm trees, encompassing the roots, stems, and leaves, significantly impacts palm oil production, therefore, meticulous attention is needed to achieve optimal yield. One of the challenges encountered in sustaining productive crops is the prevalence of pests and diseases afflicting oil palm plants. These diseases can detrimentally influence growth and development, leading to decreased productivity. Oil palm productivity is closely related to the conditions of its leaves, which play a vital role in photosynthesis. This research employed a comprehensive dataset of 1,230 images, consisting of 410 showing leaves, another 410 depicting bagworm infestations, and an additional 410 displaying caterpillar infestations. Furthermore, the major objective was to formulate a deep learning model for the identification of diseases and pests affecting oil palm leaves, using image analysis techniques to facilitate pest management practices. To address the core problem under investigation, the GoogLeNet deep learning approach was applied, alongside various hyperparameters. The classification experiments were executed across 16 trials, each capped at a computational timeframe of 10 minutes, and the predominant duration spanned from 2 to 7 minutes. The results, particularly derived from the superior performance in Model 4 (M4), showed evaluation accuracy, precision, recall, and F1-score rates of 93.22%, 93.33%, 93.95%, and 93.15%, respectively. These were highly satisfactory, warranting their application in oil palm companies to enhance the management of pest and disease attacks.
SAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and LHSV 0.5-2h-1. The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1. Meanwhile, the same catalyst was used to improve base oil spec
... Show MoreChange detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac
Laboratory studies were conducted at the biological control unit, college of Agriculture, University of Baghdad to evaluate some biological aspects of the predator Chilocorus bipustulatus (Coleoptera: Coccinellidae), which is considered one of the most important predators on many insect pests, especially the scale insect, Parlatoria blanchardi, (Homoptera: Diaspididae) on date palms. The results showed that biological parameters of the predator were varied according to different degree of temperature. Egg incubation period was significantly different and reached to 7.5 and 5.44 day at 25 and 30°C respectively, Fertility was the same 100% at both temperature degrees. Larval growth periods were 17.41 and 16.12 day as well as the mortality
... Show MoreSmart water flooding (low salinity water flooding) was mainly invested in a sandstone reservoir. The main reasons for using low salinity water flooding are; to improve oil recovery and to give a support for the reservoir pressure.
In this study, two core plugs of sandstone were used with different permeability from south of Iraq to explain the effect of water injection with different ions concentration on the oil recovery. Water types that have been used are formation water, seawater, modified low salinity water, and deionized water.
The effects of water salinity, the flow rate of water injected, and the permeability of core plugs have been studied in order to summarize the best conditions of low salinity
... Show MoreBio-diesel is an attractive fuel fordiesel engines. The feedstock for bio-diesel production is usually vegetable oil, waste cooking oil, or animal fats. This work provides an overview concerning bio-diesel production. Also, this work focuses on the commercial production of biodiesel. The objective is to study the influence of these parameters on the yield of produced. The biodiesel production affecting by many parameters such s alcohol ratio (5%, 10%,15 %, 20%,25%,30%35% vol.), catalyst loading (5,10,15,20,25) g,temperature (45,50,55,60,65,70,75)°C,reaction time (0-6) h, mixing rate (400-1000) rpm. the maximum bio-diesel production yield (95%) was obtained using 20% methanol ratio and 15g biocatalyst at 60°C.
The research aims to identify the magnitude of the impact of external debt on the gross domestic product in Morocco, and the importance of research lies in the role that external debt plays in addressing structural imbalances, if it is best disposed of according to well-studied economic plans by specialists in this regard, especially if these debts are directed with Other resources, as it helps pay the costs of these debts (debt servicing) that the external debt also raises the level of gross domestic product, and the research starts from the hypothesis that: There is an effect of foreign debt on the GDP in Morocco, has contributed in one way or another to The exacerbation of the external debt, which affected the m
... Show MoreIn this paper, the topic of forecasting the changes in the value of Iraqi crude oil exports for the period from 2019 to 2025, using the Markov transitional series based on the data of the time series for the period from January 2011 to November 2018, is real data obtained from the published data of the Central Agency Of the Iraqi statistics and the Iraqi Ministry of Oil that the results reached indicate stability in the value of crude oil exports according to the data analyzed and listed in the annex to the research.
Keywords: Using Markov chains