The general health of palm trees, encompassing the roots, stems, and leaves, significantly impacts palm oil production, therefore, meticulous attention is needed to achieve optimal yield. One of the challenges encountered in sustaining productive crops is the prevalence of pests and diseases afflicting oil palm plants. These diseases can detrimentally influence growth and development, leading to decreased productivity. Oil palm productivity is closely related to the conditions of its leaves, which play a vital role in photosynthesis. This research employed a comprehensive dataset of 1,230 images, consisting of 410 showing leaves, another 410 depicting bagworm infestations, and an additional 410 displaying caterpillar infestations. Furthermore, the major objective was to formulate a deep learning model for the identification of diseases and pests affecting oil palm leaves, using image analysis techniques to facilitate pest management practices. To address the core problem under investigation, the GoogLeNet deep learning approach was applied, alongside various hyperparameters. The classification experiments were executed across 16 trials, each capped at a computational timeframe of 10 minutes, and the predominant duration spanned from 2 to 7 minutes. The results, particularly derived from the superior performance in Model 4 (M4), showed evaluation accuracy, precision, recall, and F1-score rates of 93.22%, 93.33%, 93.95%, and 93.15%, respectively. These were highly satisfactory, warranting their application in oil palm companies to enhance the management of pest and disease attacks.
The silver nanoparticles synthesized have to be handled by humans and must be available at cheaper rates for their effective utilization; thus, there is a need for an environmentally and economically feasible way to synthesize these nanoparticles. Therefore, this study aimed to synthesis of silver nanoparticles using phenolic compounds extracted from Rosmarinus officinalis. The maceration method and Soxhlet apparatus were used to prepare aqueous and methanolic Rosmarinus officinalis leaves extracts respectively, Furthermore, Rosmarinus officinalis silver nanoparticles (RAgNPs) were prepared from the aqueous and methanolic leaves extract of this plant and diagnosed using the ultraviolet (UV) spectroscopy, scanning electron microscopy (SEM),
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreIn this research, a number of the western al-Anbar clays (red iron clays, Attapulgite) were modified by treating them thermally with a temperature of 650oC. After that, these clays reflux with sodium hydroxide 5% for 1 hour by using microwave as a power supply. The research included fractionation alqayaira crude oil the fractionation included removing the asphaltene by precipitation from the crude using a simple paraffin solvent (normal hexane) as a non-soluble substance. After that it was filtered using the ash-free filter paper 42, the dissolved part, maltinate, was taken, drying a temperature of 75oC and weight, and to find the percentage of the two parts. Malatine was divided into three main parts (paraf
... Show MoreThe problem of Multicollinearity is one of the most common problems, which deal to a large extent with the internal correlation between explanatory variables. This problem is especially Appear in economics and applied research, The problem of Multicollinearity has a negative effect on the regression model, such as oversized variance degree and estimation of parameters that are unstable when we use the Least Square Method ( OLS), Therefore, other methods were used to estimate the parameters of the negative binomial model, including the estimated Ridge Regression Method and the Liu type estimator, The negative binomial regression model is a nonline
... Show MoreThe study conducted to investigate the association between Helicobacter pylori infection and eye diseases (Glaucoma, Cataract, CSR and Uveitis). One hundred and four patients with multiple eye disorders (10-80) years were observed from 10/9 to 18/11/2020 and compared to thirty-one healthy people (19 female and 12 male). Both participants were tested for anti-H. pylori IgA, and IgG antibodies using ELISA. There were non –significant differences (P≥0.05) in the concentration of anti-H. pylori IgA Abs in sera of patients with Glaucoma, CSR, and Uveitis compared to the control group, but there was a significant difference (P≤0.05) in the concentration of H. pylori IgA Abs in sera of patients with Cataract compared to the control group and
... Show MoreThis study presents an updated checklist of the dipteran-borne diseases in Iraq, together with their original name combinations and synonyms. According to this checklist, 152 species, 40 genera within 14 families. Furthermore, minor corrections were applied to some authors’ names and years of publication.
This paper proposes a new approach, of Clustering Ultrasound images using the Hybrid Filter (CUHF) to determine the gender of the fetus in the early stages. The possible advantage of CUHF, a better result can be achieved when fuzzy c-mean FCM returns incorrect clusters. The proposed approach is conducted in two steps. Firstly, a preprocessing step to decrease the noise presented in ultrasound images by applying the filters: Local Binary Pattern (LBP), median, median and discrete wavelet (DWT),(median, DWT & LBP) and (median & Laplacian) ML. Secondly, implementing Fuzzy C-Mean (FCM) for clustering the resulted images from the first step. Amongst those filters, Median & Laplace has recorded a better accuracy. Our experimental evaluation on re
... Show More