The general health of palm trees, encompassing the roots, stems, and leaves, significantly impacts palm oil production, therefore, meticulous attention is needed to achieve optimal yield. One of the challenges encountered in sustaining productive crops is the prevalence of pests and diseases afflicting oil palm plants. These diseases can detrimentally influence growth and development, leading to decreased productivity. Oil palm productivity is closely related to the conditions of its leaves, which play a vital role in photosynthesis. This research employed a comprehensive dataset of 1,230 images, consisting of 410 showing leaves, another 410 depicting bagworm infestations, and an additional 410 displaying caterpillar infestations. Furthermore, the major objective was to formulate a deep learning model for the identification of diseases and pests affecting oil palm leaves, using image analysis techniques to facilitate pest management practices. To address the core problem under investigation, the GoogLeNet deep learning approach was applied, alongside various hyperparameters. The classification experiments were executed across 16 trials, each capped at a computational timeframe of 10 minutes, and the predominant duration spanned from 2 to 7 minutes. The results, particularly derived from the superior performance in Model 4 (M4), showed evaluation accuracy, precision, recall, and F1-score rates of 93.22%, 93.33%, 93.95%, and 93.15%, respectively. These were highly satisfactory, warranting their application in oil palm companies to enhance the management of pest and disease attacks.
The research dealt with a comparative study between some semi-parametric estimation methods to the Partial linear Single Index Model using simulation. There are two approaches to model estimation two-stage procedure and MADE to estimate this model. Simulations were used to study the finite sample performance of estimating methods based on different Single Index models, error variances, and different sample sizes , and the mean average squared errors were used as a comparison criterion between the methods were used. The results showed a preference for the two-stage procedure depending on all the cases that were used
Free radical formation in heme proteins is recognized as a factor in mediating the toxicity of many chemicals. The present study was designed to evaluate the dose-response relationship of the free radical scavenging properties of pentoxifylline in nitrite-induced Hb oxidation. Different concentrations of pentoxifylline were added at different time intervals of Hb oxidation in erythrocytes lysate, and formation of methemoglobin (MetHb) was monitored spectrophotometrically. The results showed that in this model, pentoxifylline successfully attenuates Hb oxidation after challenge with sodium nitrite; this protective effect was found to be not related to the catalytic stage of Hb oxidation, th
... Show MoreIndustrial Investment according to Clean Productive methods is an important element in the process of rational use of Economic Resources, and the Iraqi industrial sector relied on traditional production methods; the productive activities in this sector did not take into consideration the environmental dimension, which leads to achieving the optimal use of economic resources, so it was necessary to have new investment trends heading with Clean Production. Therefore, the research is based on the hypothesis that "Clean Production contributes to improving the environment and rational use of Natural Resources." Based on the descriptive - inductive analysis methodology that study of Iraqi industries with Clean Production,
... Show MoreThe specifications of lubricating oil are fundamentally the final product of materials that have been added for producing the desired properties. In this research, spherical nanoparticles copper oxide (CuO) and titanium oxides (TiO2) are added to SAE 15W40 engine oil to study the thermal conductivity, stability, viscosity of nano-lubricants, which are prepared at different concentrations of 0.1%, 0.2%, 0.5%, and 1% by weight, and also their pour point, and flash point as five quality parameters. The obtained results show that CuO nanoparticles in all cases, give the best functionality and effect on engine oil with respect to TiO2. With 0.1 wt. % concentration, the thermal conductivity of CuO/oil and TiO2/
... Show MoreThe faujasite type Y zeolite catalyst was prepared from locally available kaolin. For prepared faujasite type NaY zeolite X-ray, FT-IR, BET pore volume and surface area, and silica/ alumina were determined. The Xray and FT-IR show the compatibility of prepared catalyst with the general structure of standard zeolite Y. BET test shows that the surface area and pore volume of prepared catalyst were 360 m2 /g and 0.39 cm3 /g respectively.
The prepared faujasite type NaY zeolite modified by exchanging sodium ion with ammonium ion using ammonium nitrate and then ammonium ion converted to hydrogen ion. The maximum sodium ion exchange with ammonium ion was 53.6%. The catalytic activity of prepared faujasite type NaY, NaNH4Y and NaHY zeolites
The variation in wing morphological features was investigated using geometric morphometric technique of the Sand Fly from two Iraqi provinces Babylon and Diyala . We distributed eleven landmarks on the wings of Sand Fly species. By using the centroid size and shape together, all species were clearly distinguished. It is clear from these results that the wing analysis is an essential method for future geometric morphometry studies to distinguish the species of Sand Flies in Iraq.