Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
In this investigative endeavor, a novel concrete variety incorporating sulfur-2,4-dinitrophenylhydrazine modification was developed, and its diverse attributes were explored. This innovative concrete was produced using sulfur-2,4-dinitrophenylhydrazine modification and an array of components. The newly created sulfur-2,4-dinitrophenylhydrazine modifier was synthesized. The surface texture resulting from this modifier was examined using SEM and EDS techniques. The component ratios within concrete, chemical and physical traits derived from the sulfur-2,4-dinitrophenylhydrazine modifier, chemical and corrosion resistance of concrete, concrete stability against water absorption, concrete resilience against freezing, physical and mechanical p
... Show MoreThis paper reports an experimental study of welding of dissimilar materials between transparent Polymethylmethacrylate (PMMA) and stainless steel 304 sheets using a pulsed mode Nd:YAG laser. The process was carried out for two cases; laser transmission joining (LTJ) and conduction joining (CJ). The former is achieved when the joint is irradiated from the polymer side and the latter when the joint is irradiated from the opposite side (metal side). The light and process parameters represented by the peak power (Pp), pulse duration (τ), pulse repetition rate (PRR), scanning speed (ν) and pulse shape have a significant effect on the joint strength (Fb), joint bead width (b), joint quality and appearance. The optimum parameters were determined
... Show MoreThis paper deals with the estimation of the stress strength reliability for a component which has a strength that is independent on opposite lower and upper bound stresses, when the stresses and strength follow Inverse Kumaraswamy Distribution. D estimation approaches were applied, namely the maximum likelihood, moment, and shrinkage methods. Monte Carlo simulation experiments were performed to compare the estimation methods based on the mean squared error criteria.
Roughness length is one of the key variables in micrometeorological studies and environmental studies in regards to describing development of cities and urban environments. By utilizing the three dimensions ultrasonic anemometer installed at Mustansiriyah university, we determined the rate of the height of the rough elements (trees, buildings and bridges) to the surrounding area of the university for a radius of 1 km. After this, we calculated the zero-plane displacement length of eight sections and calculated the length of surface roughness. The results proved that the ranges of the variables above are ZH (9.2-13.8) m, Zd (4.3-8.1) m and Zo (0.24-0.48) m.
Background: Angiogenesis is defined as the formation of new blood vessels. However, angiogenesis in cancer will lead to tumour growth and metastasis. Therefore, anti-angiogenesis is one of the ways to slow down growth and spreading of tumour. Moringa oleifera is also known as a “Miracle tree” which has high nutritive value and various therapeutics effect in different parts of the plant. This study aims to determine the anti-angiogenic property of Moringa oleifera leaves extract by using chick chorioallantoic membrane (CAM) assay. Materials and Methods: The extracts were prepared by decoction method using methanol and water. The qualitative phytochemical screening was carried out for
... Show MoreThe texture analysis of cancer cells leads to a procedure to distinguish spatial differences within an image and extract essential information. This study used two test tumours images to determine cancer type, location, and geometric characteristics (area, size, dimensions, radius, etc.). The suggested algorithm was designed to detect and distinguish breast cancer using the segmentation-based threshold technique. The method of texture analysis Grey Level Size Zone method was used to extract 11 features: Small Zone Emphasis, Large Zone Emphasis, Low Grey Level Zone Emphasis, High Grey Level Zone Emphasis, Small Zone Low Grey Level Emphasis, Small Zone High Grey Level Emphasis, Large Zone Low Grey Level Emphasis, Large Zone High Gre
... Show MoreThe present study aimed to assess the antibacterial activity of peanut (Arachis hypogaea L.) skin extracts. The phytochemical analysis of the peanut skin extracts was investigated, the result showed a strong presence of flavonoids, phenols, alkaloids and tannins in methanol and ethyl acetate extracts. Antibiotic susceptibility of the bacterial isolates was performed on seven antibiotics represented by Amikacin, Tetracycline, Ciprofloxacin, Chloramphenicol, Ticarcillin, Cefotaxime and Gentamicin by disc diffusion method. The antibiogram for studied isolates revealed high level resistance of A. baumannii to all of the antibiotics under test except amikacin, while Staph. aurous was resistance to Chloramphenicol and Cefotxime and sensitive to A
... Show More