Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in
... Show MoreBackground: Fibromyalgia syndrome (FMS) is the
most common rheumatic cause of diffuse pain and
multiple regional musculoskeletal pain and disability.
Objective: is to assess the contribution of serum
lipoprotein (A) in the pathogenesis of FMS patients.
Methods: One hundred twenty two FMS patients
were compared with 60 healthy control individuals
who were age and sex matched. All FMS features and
criteria are applied for patients and controls; patients
with secondary FMS were excluded. Serum
Lipoprotein (A): [Lp(A)], body mass index (BMI), &
s.lipid profile were determined for both groups.
Results: There was a statistical significant difference
between patients &controls in serum lipoprotein
The summary:
This research paper presents a standard economic study. This study aims to build an economic standard form of the investment effect in Human Capital on Economic Growth in Algeria. The study showed that there is an inverse relationship between the investment and human capital. This is expressed by expending on education and economic growth. This contradicts with the economic theory. Such matter could be explained by that expending on education does not contribute in the economic growth. This refers to that the education sector result does not employee or save jobs. Thus, it does not contribute in growth; in addition, the Algerian economy depends on petrol in the first class. This means the ab
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreAmplitude variation with offset (AVO) analysis is an 1 efficient tool for hydrocarbon detection and identification of elastic rock properties and fluid types. It has been applied in the present study using reprocessed pre-stack 2D seismic data (1992, Caulerpa) from north-west of the Bonaparte Basin, Australia. The AVO response along the 2D pre-stack seismic data in the Laminaria High NW shelf of Australia was also investigated. Three hypotheses were suggested to investigate the AVO behaviour of the amplitude anomalies in which three different factors; fluid substitution, porosity and thickness (Wedge model) were tested. The AVO models with the synthetic gathers were analysed using log information to find which of these is the
... Show MoreA freshwater bivalve plays a crucial function in aquatic habitats as the filtered water and burrowing mussels mix the sediment, thus increasing oxygen content and making the ecosystem healthier. The aim of the study is to see how chlorpyrifos affects biochemical markers in freshwater mussel Unio tigridis. About 180 individuals per taxon and water samples were collected from the Qandil water resource on the Greater Zab River, Erbil Province, Iraq. Once arrived at the lab, the individuals were kept in aquaria with river water and an air-conditioned room Temperature: 25±2 and Light: 12h/12h and acclimatized to laboratory conditions for seven days in aged tap water. The mussel's identification molecularly and the DNA sequence of t
... Show MoreThe current study aims to develop a proposed educational program based on augmented reality (AR) technology, in addition to assessing its effectiveness in developing research and historical imagination skills of the Humanities Track's female students at the secondary stage, as well as assessing the correlative and predictive relationships between the amount of growth for the two dependent variables. To achieve this, a secondary school in the city of Makkah Al-Mukarramah was chosen, and an available random sample of (30) female students from the study population was selected. The quasi-experimental approach was followed by this study, particularly one group design. In addition, two tools were used to collect study data, namely: a test of
... Show More