Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show MoreAbstract: The research covered five chapters: So, the first chapter definition of the research is from the introduction to the research and its importance, as the importance of the research lies in an expression of the reality of e-learning as it is one of the new patterns of the educational process and its role in enhancing communication and interconnectedness between the learners from the students ’point of view Physical Education and Sports Sciences for Girls, University of Baghdad, as for the problem The research was, and through the researcher’s acquaintance with many previous studies, references and sources, and being a student at the College of Physical Education and Sports Sciences - University of
... Show MoreA particulate polymer composite material was prepared by reinforcing with the Aluminum Oxide (Al2O3) or Aluminum (Al) metallic particles with a particle size of (30) µm to an unsaturated Polyester Resin with a weight fraction of (5%, 10%, 15%, 20%).
Tensile test results showed the maximum value of elastic modulus reached (2400MPa.) in the case of reinforcing with (Al) particles with weight fraction (20%) and (1500 MPa.) in the case of reinforcing with (Al2O3) particles of the same weight fraction.
When the impact and the flexural strength tests were done, the results showed that flexural strength (F.S), maximum shear stress (τmax), impact strength
... Show MoreThe administration on the basis of the activities designed to evaluate the performance of activities in terms of cost, time and quality by identifying activities that add value and those that are no add value and enables the administration of making up their own continuous improvement in production, through lower costs and reduce the time and improve the quality and reduce the incidence of spoilage and waste, y based search Ally premise that (the continuous improvement of the adoption of management style on the basis of the activities helps management in decision-making wise to reduce costs) to prove the hypothesis has sought research to achieve its goal of Alkadivh and Alkoppelan &nb
... Show MoreThe serum protein test includes measurement of the level of total protein(albumin, globulin). Fetuin-A is a blood protein made in liver. It can inhibit insulin receptor, enhance insulin sensitivity and make the individuals more likely to develop type 2 diabetes, then disorder in lipid profile (Total cholesterol(TC), low density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-c), Triglyceride(TG) and very low density lipoprotein cholesterol (VLDL-c) . To evaluate Fetuin-A, total protein, albumin, globulin, HbAlc and lipid profile in 200 adult and elderly Iraqi patients with type 2 Diabetes Mellitus were taken and compare them with 200 subjects as a healthy control. The laboratory analysis(for patients and
... Show MoreThe purple pigment violacein is produced by Gram-negative bacteria, mainly from the Chromobacterium violaceum. Violacein is synthesized by fusing two Ltryptophan molecules using five different enzymes encoded by VioA, VioB, VioC, VioD, and VioE genes. These genes have transferred to genetically engineering microorganisms such as E.coli for high production of violacein. It is receiving greater interest because of its significant biological functions and therapeutic potential. The reviews outlining the biosynthesis, production, and biological significance of violacein are being published.
Blastocystosis is symptomatic infection caused by the protozoal parasite Blastocystis , which resides in the intestinal tract of its hosts and it is one of the most common parasites reported in humans. It’s prevalence ranges between (30 - 50%) of the population in developing countries. This genus has a worldwide distribution and often the most commonly reported human intestinal protozoan in children and adults, even infect infants
Longitudinal data is becoming increasingly common, especially in the medical and economic fields, and various methods have been analyzed and developed to analyze this type of data.
In this research, the focus was on compiling and analyzing this data, as cluster analysis plays an important role in identifying and grouping co-expressed subfiles over time and employing them on the nonparametric smoothing cubic B-spline model, which is characterized by providing continuous first and second derivatives, resulting in a smoother curve with fewer abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and fluctuations in the data.
The longitudinal balanced data profile was compiled into subgroup
... Show MoreThere is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn