The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
A mathematical method with a new algorithm with the aid of Matlab language is proposed to compute the linear equivalence (or the recursion length) of the pseudo-random key-stream periodic sequences using Fourier transform. The proposed method enables the computation of the linear equivalence to determine the degree of the complexity of any binary or real periodic sequences produced from linear or nonlinear key-stream generators. The procedure can be used with comparatively greater computational ease and efficiency. The results of this algorithm are compared with Berlekamp-Massey (BM) method and good results are obtained where the results of the Fourier transform are more accurate than those of (BM) method for computing the linear equivalenc
... Show MoreIn this paper, the Azzallini’s method used to find a weighted distribution derived from the standard Pareto distribution of type I (SPDTI) by inserting the shape parameter (θ) resulting from the above method to cover the period (0, 1] which was neglected by the standard distribution. Thus, the proposed distribution is a modification to the Pareto distribution of the first type, where the probability of the random variable lies within the period The properties of the modified weighted Pareto distribution of the type I (MWPDTI) as the probability density function ,cumulative distribution function, Reliability function , Moment and the hazard function are found. The behaviour of probability density function for MWPDTI distrib
... Show MoreHere, we found an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to convex polynomial by means of weighted Totik-Ditzian modulus of continuity
Degenerate parabolic partial differential equations (PDEs) with vanishing or unbounded leading coefficient make the PDE non-uniformly parabolic, and new theories need to be developed in the context of practical applications of such rather unstudied mathematical models arising in porous media, population dynamics, financial mathematics, etc. With this new challenge in mind, this paper considers investigating newly formulated direct and inverse problems associated with non-uniform parabolic PDEs where the leading space- and time-dependent coefficient is allowed to vanish on a non-empty, but zero measure, kernel set. In the context of inverse analysis, we consider the linear but ill-pose
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreIn this paper, cubic trigonometric spline is used to solve nonlinear Volterra integral equations of second kind. Examples are illustrated to show the presented method’s efficiency and convenience.
Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solution
... Show MoreThe main aim of this study is to assess the performance and residual strength of post-fire non-prismatic reinforced concrete beams (NPRC) with and without openings. To do this, nine beams were cast and divided into three major groupings. These groups were classified based on the degrees of heating exposure temperature chosen (ambient, 400, and 700°C), with each group containing three non-prismatic beams (solid, 8 trapezoidal openings, and 8 circular openings). Experimentally, given the same beam geometry, increasing burning temperature caused degradation in NPRC beams, which was reflected in increased mid-span deflection throughout the fire exposure period and also residual deflectio