The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA molecule. A sequence DL model based on a bidirectional gated recurrent unit (GRU) is implemented. The model is applied to the Stanford COVID-19 mRNA vaccine dataset to predict the mRNA sequences deterioration by predicting five reactivity values for every base in the sequence, namely reactivity values, deterioration rates at high pH, at high temperature, at high pH with Magnesium, and at high temperature with Magnesium. The Stanford COVID-19 mRNA vaccine dataset is split into the training set, validation set, and test set. The bidirectional GRU model minimizes the mean column wise root mean squared error (MCRMSE) of deterioration rates at each base of the mRNA sequence molecule with a value of 0.32086 for the test set which outperformed the winning models with a margin of (0.02112). This study would help other researchers better understand how to forecast mRNA sequence molecule properties to develop a stable COVID-19 vaccine.
Objective: The study the association of procalcitonin (PCT) and c-reactive protein (CRP) levels in COVID-19 patients and it's role as a guide in progress and management of those patients. Methodology: This cross-sectional study analyzed 200 CIOVID-19 patients in a single privet center in Baghdad, Iraq from January 1, 2021 to January 1, 2022. Demographic data like age, sex, and clinical symptoms were recorded. High sensitivity CRP and PCT in the serum were measured via dry fluorescence immunoassay (Lansionbio-China). Results: Out of 200 patients, 50 had moderate Covid and 150 had severe disease. Mean serum PCT levels was 0.039±0.05 ng/mL in the moderate group (range 0.011-0.067) and 0.43±0.21 ng/mL in the severe group (range 0.21
... Show MoreThe objective of this study was to investigate the levels of depression, anxiety, and stress among dentists during covid-19 lockdown and to investigate the relationship between stress and each mental health state.
A cross-sectional survey on 269 dentists was conducted using DASS-21 and PHQ-9 questionnaires. Bivariate and multivariate models were constructed and the odds ratio (OR) was calculated to assess the strength of the association between an independent categorical variable and the outcome.
Being unsatisfied with the job was as
This booklet contains the basic data and graphs forCOVID-19 in Iraq during the first three months of thepandemic ( 24 February to 19 May - 2020 ) , It isperformed to help researchers regarding this health problem (PDF) Information Booklet COVID-19 Graphs For Iraq First 3 Months. Available from: https://www.researchgate.net/publication/341655944_Information_Booklet_COVID-19_Graphs_For_Iraq_First_3_Months#fullTextFileContent [accessed Oct 26 2024].
The study aims to use the European Excellence Model (EFQM) in assessing the institutional performance of the National Center for Administrative Development and Information Technology in order to determine the gap between the actual reality of the performance of the Center and the standards adopted in the model, in order to know the extent to which the Center seeks to achieve excellence in performance to improve the level of services provided and the adoption of methods Modern and contemporary management in the evaluation of its institutional performance.
The problem of the study was the absence of an institutional performance evaluation system at the centre whereby weaknesses (areas of improvement) and st
... Show MoreRetinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b