Preferred Language
Articles
/
bsj-8504
Deep Learning-based Predictive Model of mRNA Vaccine Deterioration: An Analysis of the Stanford COVID-19 mRNA Vaccine Dataset
...Show More Authors

The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA molecule. A sequence DL model based on a bidirectional gated recurrent unit (GRU) is implemented. The model is applied to the Stanford COVID-19 mRNA vaccine dataset to predict the mRNA sequences deterioration by predicting five reactivity values for every base in the sequence, namely reactivity values, deterioration rates at high pH, at high temperature, at high pH with Magnesium, and at high temperature with Magnesium. The Stanford COVID-19 mRNA vaccine dataset is split into the training set, validation set, and test set. The bidirectional GRU model minimizes the mean column wise root mean squared error (MCRMSE) of deterioration rates at each base of the mRNA sequence molecule with a value of 0.32086 for the test set which outperformed the winning models with a margin of (0.02112). This study would help other researchers better understand how to forecast mRNA sequence molecule properties to develop a stable COVID-19 vaccine.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 13 2022
Journal Name
وقائع المؤتمر العلمي الدولي التاسع / المجلة الامريكية الدولية للعلوم الانسانية والاجتماعية
The Relationship between Job Satisfaction and Organizational Loyalty among Baghdad University Employees in light of Covid- 19 A Descriptive Analytical Study (University of Baghdad as a model)
...Show More Authors

The educational service industry is one of the most negatively affected industries by the spread of the COVID-19 pandemic. Government agencies have taken many measures to slow its spread, and then restrict movement and gatherings and stop recreational activities. Furthermore, the repercussions of the curfew had a significant impact due to the interruption in actual attendance for students and employees, and the severity of the Covid-19 crisis and its (economic, social, security, humanitarian and behavioral) effects on all societies and work sectors is no secret to anyone. Iraq, like other countries, was also affected by the negative impact of Covid-19 pandemic in all fields of institutional work, especially public fields, and specifically t

... Show More
Publication Date
Fri Jan 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
BotDetectorFW: an optimized botnet detection framework based on five features-distance measures supported by comparisons of four machine learning classifiers using CICIDS2017 dataset
...Show More Authors

<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver &amp; kroeber, overlap, and pearson correlation

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Studies In Systems, Decision And Control
Gap Analysis by Readiness Review Including Online Learning During COVID-19 Pandemic Period for Engineering Programs at the College of Engineering—University of Baghdad
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue May 02 2023
Journal Name
Social Science Journal
An Investigation of Microstructure Analysis for World Health Organizatioan Speeches during Covid-19 Pandemic: Adopted Van Dijk Theory
...Show More Authors

Publication Date
Sun Sep 01 2019
Journal Name
Baghdad Science Journal
An Analysis of a Partial Temporary Immunity SIR Epidemic Model with Nonlinear Treatment Rate
...Show More Authors

     A partial temporary immunity SIR epidemic model involv nonlinear treatment rate is proposed and studied. The basic reproduction number  is determined. The local and global stability of all equilibria of the model are analyzed. The conditions for occurrence of local bifurcation in the proposed epidemic model are established. Finally, numerical simulation is used to confirm our obtained analytical results and specify the control set of parameters that affect the dynamics of the model.

View Publication Preview PDF
Scopus (7)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Implementation of Machine Learning Techniques for the Classification of Lung X-Ray Images Used to Detect COVID-19 in Humans
...Show More Authors

COVID-19 (Coronavirus disease-2019), commonly called Coronavirus or CoV, is a dangerous disease caused by the SARS-CoV-2 virus. It is one of the most widespread zoonotic diseases around the world, which started from one of the wet markets in Wuhan city. Its symptoms are similar to those of the common flu, including cough, fever, muscle pain, shortness of breath, and fatigue. This article suggests implementing machine learning techniques (Random Forest, Logistic Regression, Naïve Bayes, Support Vector Machine) by Python to classify a series of chest X-ray images that include viral pneumonia, COVID-19, and healthy (Not infected) cases in humans. The study includes more than 1400 images that are collected from the Kaggle platform. The expe

... Show More
View Publication Preview PDF
Scopus (36)
Crossref (18)
Scopus Crossref
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
Spatio-Temporal Mixture Model for Identifying Risk Levels of COVID-19 Pandemic in Iraq
...Show More Authors

     This paper focuses on choosing a spatial mixture model with implicitly includes the time to represent the relative risks of COVID-19 pandemic using an appropriate model selection criterion. For this purpose, a more recent criterion so-called the widely Akaike information criterion (WAIC) is used which we believe that its use so limitedly in the context of relative risk modelling. In addition, a graphical method is adopted that is based on a spatial-temporal predictive posterior distribution to select the best model yielding the best predictive accuracy. By applying this model selection criterion, we seek to identify the levels of relative risk, which implicitly represents the determination of the number of the model components o

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Jun 07 2023
Journal Name
Journal Of Educational And Psychological Researches
Health Anxiety Related to Coronavirus (Covid 19) and Its Relationship to Health Behavior among Baghdad University Employees
...Show More Authors

The aim of the research is to identify the relationship between health anxiety associated with Coronavirus (Covid 19) and its relationship to health behavior among Baghdad University employees, as well as to identify the differences in health anxiety and health behavior according to the variables (gender, occupation, and age). To achieve the objectives of the research, a scale was designed to measure the health anxiety in addition to the adoption of the health behavior scale prepared by (Renner & Schwarzer, 2005). The two scales were applied to a sample of (277) academics and (206) employees, while the number of students was (667). The sample was chosen by electronic application from a number of colleges at Al-Jadiriyah Complex. Afte

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 30 2021
Journal Name
Al-kindy College Medical Journal
COVID-19 and the Conspiracy Theories
...Show More Authors

The first known use of the term conspiracy theory dated back to the nineteenth century. It is defined as a theory that explains an event or set of circumstances as the result of a secret plot by usually powerful conspirators. It is commonly used, but by no means limited to, extreme political groups. Since the emergence of COVID-19 as a global pandemic in December 2019, the conspiracy theory was present at all stages of the pandemic.

Preview PDF
Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Al-kindy College Medical Journal
COVID-19 and the Conspiracy Theories
...Show More Authors

The first known use of the term conspiracy theory dated back to the nineteenth century. It is defined as a theory that explains an event or set of circumstances as the result of a secret plot by usually powerful conspirators. It is commonly used, but by no means limited to, extreme political groups. Since the emergence of COVID-19 as a global pandemic in December 2019, the conspiracy theory was present at all stages of the pandemic.

View Publication Preview PDF
Crossref