The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA molecule. A sequence DL model based on a bidirectional gated recurrent unit (GRU) is implemented. The model is applied to the Stanford COVID-19 mRNA vaccine dataset to predict the mRNA sequences deterioration by predicting five reactivity values for every base in the sequence, namely reactivity values, deterioration rates at high pH, at high temperature, at high pH with Magnesium, and at high temperature with Magnesium. The Stanford COVID-19 mRNA vaccine dataset is split into the training set, validation set, and test set. The bidirectional GRU model minimizes the mean column wise root mean squared error (MCRMSE) of deterioration rates at each base of the mRNA sequence molecule with a value of 0.32086 for the test set which outperformed the winning models with a margin of (0.02112). This study would help other researchers better understand how to forecast mRNA sequence molecule properties to develop a stable COVID-19 vaccine.
Measuring the efficiency of postgraduate and undergraduate programs is one of the essential elements in educational process. In this study, colleges of Baghdad University and data for the academic year (2011-2012) have been chosen to measure the relative efficiencies of postgraduate and undergraduate programs in terms of their inputs and outputs. A relevant method to conduct the analysis of this data is Data Envelopment Analysis (DEA). The effect of academic staff to the number of enrolled and alumni students to the postgraduate and undergraduate programs are the main focus of the study.
This research aims to investigate the approaches adopted by Iraqi newspapers in addressing the COVID-19 pandemic crisis. Employing a descriptive methodology and survey technique, the study conducts content analysis on articles published in three prominent newspapers: Al-Sabah, Al-Mada, and Tareeq Al-Shaab. A multi-stage sampling method was employed, encompassing 260 issues of the aforementioned newspapers. Data collection involved the use of a content analysis questionnaire, with the "How it was said?" method utilized to determine analysis categories.
The results showed that Al-Sabah newspaper adopted a positive approach in addressing COVID-19-related topics, while Al-Mada newspaper remained neutral, and Tare
In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreThis study aims to measure and analyze the direct and indirect effects of the financial variables, namely (public spending, public revenues, internal debt, and external debt), on the non-oil productive sectors with and without bank credit as an intermediate variable, using quarterly data for the period (2004Q1–2021Q4), converted using Eviews 12. To measure the objective of the study, the path analysis method was used using IBM SPSS-AMOS. The study concluded that the direct and indirect effects of financial variables have a weak role in directing bank credit towards the productive sectors in Iraq, which amounted to (0.18), as a result of market risks or unstable expectations in the economy. In addition to the weak credit ratings of borr
... Show MoreThe main aim of this paper are the design and implementation of a pharmaceutical inventory database management system. The system was implemented by creating a database containing information about the stored medicines in the inventory, customers making transactions with the pharmaceutical trading company (which owns the inventory), medical suppliers, employees, payments, etc. The database was connected to the main application using C sharp. The proposed system should help in manag inginventory operations which include adding/updating employees’ information, preparing sale and purchase invoices, generating reports, adding/updating customers and suppliers, tracking customer payments and checking expired medicines in order to be disposed
... Show MoreThis research aims to examine the effectiveness of a teaching strategy based on the cognitive model of Daniel in the development of achievement and the motivation of learning the school mathematics among the third intermediate grade students in the light of their study of "Systems of Linear Equations”. The research was conducted in the first semester (1439/1440AH), at Saeed Ibn Almosaieb Intermediate School, in Arar, Saudi Arabia. A quasi-experimental design has been used. In addition, a (pre & post) achievement test (20 Questions) and a (pre & post) scale of learning motivation to the school mathematics (25 Items) have been applied on two groups: a control group (31Students), and an experimental group (29 Students). The resear
... Show MoreMedicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreCodes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show MoreIn recent decades, the identification of faces with and without masks from visual data, such as video and still images, has become a captivating research subject. This is primarily due to the global spread of the Corona pandemic, which has altered the appearance of the world and necessitated the use of masks as a vital measure for epidemic prevention. Intellectual development based on artificial intelligence and computers plays a decisive role in the issue of epidemic safety, as the topic of facial recognition and identifying individuals who wear masks or not was most prominent in the introduction and in-depth education. This research proposes the creation of an advanced system capable of accurately identifying faces, both with and
... Show More