In this study, an improved process was proposed for the synthesis of structure-controlled Cu2O nanoparticles, using a simplified wet chemical method at room temperature. A chemical solution route was established to synthesize Cu2O crystals with various sizes and morphologies. The structure, morphology, and optical properties of Cu2O nanoparticles were analyzed by X-ray diffraction, SEM (scanning electron microscope), and UV-Vis spectroscopy. By adjusting the aqueous mixture solutions of NaOH and NH2OH•HCl, the synthesis of Cu2O crystals with different morphology and size could be realized. Strangely, it was found that the change in the ratio of de-ionized water and NaOH aqueous solution led to the synthesis of Cu2O crystals of different sizes, while the morphology of Cu2O crystals was not affected. The synthesized Cu2O crystal samples were used as photocatalysts for methyl orange (MO) dye decomposition, as a model molecule, to evaluate the photocatalytic activities. However, under 200 watts of a visible light source, there are four samples with and without graphene-based nanocomposite of Cu2O NPs. The results showed that, compared with roughly spherical, irregular but thick plates, brick and small granule spheres shaped Cu2O nanoparticles provided better activity. The Cu2O sample with irregular but thick platelet-like shapes, having an average particle size of 0.53 µm, exhibited excellent photocatalytic activity (99.08% degradation). In addition, by reducing the size of Cu2O particles and preparing their graphene composition, one can fabricate a sample (Cu2-Cu2Gr) with the highest efficiency which has significantly better photocatalytic activity in comparison to the others. This work represents an innovative strategy for pre-the-case production of nanomaterials with shapes and sizes, that is, Cu2O crystals, with excellent photocatalytic activity through compositing with graphene
In this paper, A.C conductivity of micro and nano grain size- TiO2 filled epoxy composites is measured. The dielectric material used is epoxy resin, while micro and nano-sized titanium dioxide (TiO2) of grain size (1.5μm, and 50nm) was used as filler at low filler concentrations by weight (3%, and 5%). Additionally the effect of annealing temperature range (293-373)º K and at a frequency range of 102-106 Hz on the A.C conductivity of the various specimens was studied.
The result of real permittivity for micro and nanocomposite show that the real permittivity increases with decreasing frequency at range of 102-106Hz. The micron-filled material has a higher real relative permittivity than the nano-filled this is true at all the temper
The synthesis of conducting polyaniline (PANI) nanocomposites containing various concentrations of functionalized single-walled carbon nanotubes (f-SWCNT) were synthesized by in situ polymerization of aniline monomer. The morphological and electrical properties of pure PANI and PANI/SWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFM) respectively. The FTIR shows the aniline monomers were polymerized on the surface of SWCNTs, depending on the -* electron interaction between aniline monomers and SWCNTs. AFM analysis showed increasing in the roughness with increasing SWCNT content. The AC, DC electrical conductivities of pure PANI and PANI/SWCNT nanocomposite h
... Show MoreIn This paper, CuO thin films having different thickness (250, 300 , 350 and 400) nm were deposited on glass substrates by thermal vacuum evaporator. The thermal oxidation of this evaporated film was done in heated glass at temperature (300 in air at one hour. The study of X-ray diffraction investigated all the exhibit polycrystalline nature with monoclinic crystal structure include uniformly grains. Thin film’s internal structure topographical and optical properties. Furthermore, the crystallization directions of CuO (35.54 , 38.70 ) can be clearly observed through an X-ray diffraction analysis XRD, Atomic Force Microscope AFM (topographic image) showed that the surface Characteristics , thin films crystals grew with increases in either
... Show MoretA novel synthesis procedure is presented for preparing triethanolamine-treated graphene nanoplatelets(TEA-GNPs) with different specific areas (SSAs). Using ultrasonication, the covalently functionalizedTEA-GNPs with different weight concentrations and SSAs were dispersed in distilled water to prepareTEA-GNPs nanofluids. A simple direct coupling of GNPs with TEA molecules is implemented to synthesizestable water-based nanofluids. The effectiveness of the functionalization procedure was validated by thecharacterization and morphology tests, i.e., FTIR, Raman spectroscopy, EDS, and TEM. Thermal conduc-tivity, dispersion stability, and rheological properties were investigated. Using UV–vis spectrometer, ahighest dispersion stability of 0.876
... Show MoreTwo homopolymeric and three copolymeric additives for base oil were synthesized using octyl acrylate (OA) and tert-butyl acrylamide (TBA) monomers. The two additives named P1 and P2 are the homopolymers of TBA and OA, respectively, whereas copolymeric additives named Co1, Co2, and Co3 were synthesized by varying the ratios of TBA:OA as 1:3, 3:1 and 1:1, respectively. The prepared polymers were characterized by Fourier Transform Infrared (FTIR). Based on the solubility of synthesized polymers in base oil and reactivity ratios of TBA/OA copolymer (0.222, 0.434) calculated by Fineman-Ross method, P2, Co1, Co2 and Co3 were selected to evaluate their performance as pour point depressant (PPD), viscosity improver (VII), and anticorrosion addit
... Show MoreThis study came to discuss the subject of industries dependent on petrochemical industries in Iraq (plastic as a model) during the period 2005–2020, and the study concluded that the plastic industries contribute to areas of advancement and progress and opportunities to deal efficiently with the challenges posed by the new variables, the most important of which is the information revolution. communications and trade liberalization, and this is what contributes to the competitiveness of these industries. And because the petrochemical industry in Iraq has an active role in establishing plastic industrial clusters and clusters of micro, small, and medium industries by providing the necessary feedstock for these industries in various fields
... Show MoreThe modified Hummers method was applied to prepare graphene oxide (GO) from the graphite powder. Tin oxide nanoparticles with different loading (10-20 wt.%) supported on reduced graphene oxide were synthesized to evaluate the oxidative desulfurization efficiency. The catalyst was synthesized by the incipient wetness impregnation (IWI) technique. Different analysis methods like FT-IR, XRD, FESEM, AFM, and Brunauer-Emmett-Teller (BET) were utilized to characterize graphene oxide and catalysts. The XRD analysis showed that the average crystal size of graphene oxide was 6.05 nm. In addition, the FESEM results showed high metal oxide dispersions on the rGO. The EDX analysis shows the weight ratio of Sn is close to its theoretical weight.
... Show MoreWater covers more than 75% of the earth's surface in the form of the ocean. The ocean investigation is far-fetched because the underwater environment has distinct phenomenal activities. The expansion of human activities inside underwater environments includes environmental monitoring, offshore field exploration, tactical surveillance, scientific data collection, and port security. This led to increased demand for underwater application communication systems. Therefore, the researcher develops many methods for underwater VLC Visible Light Communications. The new technology of blue laser is a type of VLC that has benefits in the application of underwater communications. This research article investigated the benefits of underwater blu
... Show MoreIn this work, porous silicon (PS) are fabricated using electrochemical etching (ECE) process for p-type crystalline silicon (c-Si) wafers of (100) orientation. The structural, morphological and electrical properties of PS synthesized at etching current density of (10, 20, 30) mA/cm2 at constant etching time 10 min are studied. From X-ray diffraction (XRD) measurement, the value of FWHM is in general decreases with increasing current density for p-type porous silicon (p-PS). Atomic force microscope (AFM) showed that for p-PS the average pore diameter decreases at 20 mA. Porous silicon which formed on silicon will be a junction so I-V characteristics have been studied in the dark to calculate ideality factor (n), and saturation current (Is
... Show More