Relation on a set is a simple mathematical model to which many real-life data can be connected. A binary relation on a set can always be represented by a digraph. Topology on a set can be generated by binary relations on the set . In this direction, the study will consider different classical categories of topological spaces whose topology is defined by the binary relations adjacency and reachability on the vertex set of a directed graph. This paper analyses some properties of these topologies and studies the properties of closure and interior of the vertex set of subgraphs of a digraph. Further, some applications of topology generated by digraphs in the study of biological systems are cited.
The cozy partitions achieved more creativity by emerging with many topics in representation theory and mathematical relations. We find the precise number of cozy tableaux in the case with any number of and . Specifically, we use the MATLAB programme that coincided with the mathematical solution in giving precision to these numbers in this case.
Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.
The main objective of controlling companies Concentration is to prevent their potential anti-competitive effects on the competitive structure of the relevant market, in order to protect freedom of competition in it. In this context, it is necessary to verify that these operations do not impede effective competition or reduce it significantly by making it less than it was before, it is necessary to Anticipate all the effects In order to achieve the goal of controlling on it and revealing their potential restrictive effects. So there must be Auditing Norms that enable the authorities entrusted with the protection of competition and the prevention of monopolistic practices to evaluate these effects and determine their positive and negative as
... Show MoreLet n be a positive integer and denotes the number of overpartition triples. In this note, we prove two identities modulo 16 and 32 for . We provide a new method to reprove a result of Lin Wang for completely determining and modulo 16. Also, we find and prove an infinite family of congruences modulo 32 for . The new method relies on expanding the fourth power of the overpartition infinite product together with the help of Gauss' identity.
In this paper, we define the concept of soft -connected sets and soft -connected spaces by using the notion of soft -open sets in soft topological spaces. Several properties of these concepts are investigated.
Let be a commutative ring with identity , and be a unitary (left) R-module. A proper submodule of is said to be quasi- small prime submodule , if whenever with and , then either or . In this paper ,we give a comprehensive study of quasi- small prime submodules.
the regional and spatial dimension of development planning must be taken as a point of departure to the mutual of the spatial structure of the economy , development strategy and policies applied 'therein such as the location principles and regional development coordination of the territorial problems with the national development planning and timing of regional vis-a-vis national development plan_. Certain balance and integration is of sound necessity' between national _regional and local development objectives through which the national development strategy should have to represent the guidelines of the local development aspirations and goals. The economic development exerts an impact on the spatial evolution, being itself subje
... Show MoreIn this notion we consider a generalization of the notion of a projective modules , defined using y-closed submodules . We show that for a module M = M1M2 . If M2 is M1 – y-closed projective , then for every y-closed submodule N of M with M = M1 + N , there exists a submodule M`of N such that M = M1M`.
In this work we shall introduce the concept of weakly quasi-prime modules and give some properties of this type of modules.