In this communication, introduce the split Mersenne and Mersenne-Lucas hybrid quaternions, also obtaining generating functions and Binet formulas for these hybrid quaternions and investigating some properties among them.
This study aimed to isolate and identifye the growth of microorganisms and
their effect on pickled cucumber and cabbage, the study also investigated the effect of
garlic (in the form of segments, chopped or crushed) on the mentioned pickled –food
features . Furthermore, a sense based comparison is made between vinegar-preserved
samples and vinegar-garlic preserved ones.
The following results have been obtained:
1- The isolation of staph. aureus alone from the samples and the study of its physical
and biochemical features.
2- The fresh garlic (segments, chopped and crushed) with concentration of 5%, 7.5%,
and 10% showed a damaging percentage of 100% to bacterial growth of staph. Aureus
after 24 hours of inc
This research studyies wear rate of composite materials by using Epoxy Resin and Polyurethane Rubber as a matrix of weigt percentage (90:10) (Ep/Pu) and reinforced by PVC fibers and Aluminum fibers two dimension knitted mat with fractional volume(15 %), in different conditions like: lab conditions and after submerge the samples in water for different periods of time. . four kinds of materials were prepared: (Ep+pu), (Ep+Pu+PVC), (Ep+Pu+Al.F), (Ep+Pu+PVC+Al. F) .And the results have shown that the best wear resistance are for the hybrid composite material (Ep + Pu+ PVC + Al. F) and wear rate of all samples increased when it was submerged in water
Face recognition is one of the most applications interesting in computer vision and pattern recognition fields. This is for many reasons; the most important of them are the availability and easy access by sensors. Face recognition system can be a sub-system of many applications. In this paper, an efficient face recognition algorithm is proposed based on the accuracy of Gabor filter for feature extraction and computing the Eigen faces. In this work, efficient compressed feature vector approach is proposed. This compression for feature vector gives a good recognition rate reaches to 100% and reduced the complexity of computing Eigen faces. Faces94 data base was used to test method.
The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreAbstract :
The Aims of this research is to describe the concept of risk, its type and method of measurement, and to clarify the impact of these risks on the expected cash flow statement and the preparation of the target cash flow statement that takes these risks into consideration. Because the local economic environment is exposed to many risks, Therefore, this list will be predictive, which will help the economic unit to make administrative decisions, especially decisions related to operational, investment and financing activities. Therefore, the research problem is based on the fact that most of the local economic units are the list of flows According to the actual basis and not according to the discretionary basis (bud
... Show MoreThis paper deals the prediction of the process of random spatial data of two properties, the first is called Primary variables and the second is called secondary variables , the method that were used in the prediction process for this type of data is technique Co-kriging , the method is usually used when the number of primary variables meant to predict for one of its elements is measured in a particular location a few (because of the cost or difficulty of obtaining them) compare with secondary variable which is the number of elements are available and highly correlated with primary variables, as was the&nbs
... Show MoreThis research sought to present a concept of cross-sectional data models, A crucial double data to take the impact of the change in time and obtained from the measured phenomenon of repeated observations in different time periods, Where the models of the panel data were defined by different types of fixed , random and mixed, and Comparing them by studying and analyzing the mathematical relationship between the influence of time with a set of basic variables Which are the main axes on which the research is based and is represented by the monthly revenue of the working individual and the profits it generates, which represents the variable response And its relationship to a set of explanatory variables represented by the
... Show MoreIt has been shown in ionospheric research that calculation of the total electron content (TEC) is an important factor in global navigation system. In this study, TEC calculation was performed over Baghdad city, Iraq, using a combination of two numerical methods called composite Simpson and composite Trapezoidal methods. TEC was calculated using the line integral of the electron density derived from the International reference ionosphere IRI2012 and NeQuick2 models from 70 to 2000 km above the earth surface. The hour of the day and the day number of the year, R12, were chosen as inputs for the calculation techniques to take into account latitudinal, diurnal and seasonal variation of TEC. The results of latitudinal variation of TE
... Show MoreThis paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show More