In information security, fingerprint verification is one of the most common recent approaches for verifying human identity through a distinctive pattern. The verification process works by comparing a pair of fingerprint templates and identifying the similarity/matching among them. Several research studies have utilized different techniques for the matching process such as fuzzy vault and image filtering approaches. Yet, these approaches are still suffering from the imprecise articulation of the biometrics’ interesting patterns. The emergence of deep learning architectures such as the Convolutional Neural Network (CNN) has been extensively used for image processing and object detection tasks and showed an outstanding performance compared to traditional image filtering techniques. This paper aimed to utilize a specific CNN architecture known as AlexNet for the fingerprint-matching task. Using such an architecture, this study has extracted the significant features of the fingerprint image, generated a key based on such a biometric feature of the image, and stored it in a reference database. Then, using Cosine similarity and Hamming Distance measures, the testing fingerprints have been matched with a reference. Using the FVC2002 database, the proposed method showed a False Acceptance Rate (FAR) of 2.09% and a False Rejection Rate (FRR) of 2.81%. Comparing these results against other studies that utilized traditional approaches such as the Fuzzy Vault has demonstrated the efficacy of CNN in terms of fingerprint matching. It is also emphasizing the usefulness of using Cosine similarity and Hamming Distance in terms of matching.
The formula of Ijarah and Ijarah ending with ownership is one of the investment formulas in Islamic banks, so this research has shed light on it in order to benefit from the experiences of the research sample banks, This research aims to find a reliable way for Iraqi Islamic banks, namely (leasing and leasing ending with ownership) in order to invest their money without usurious interests, The problem of the research emerges through the lack of awareness of the Iraqi Islamic banks to work with different Islamic financing formulas and their inability to invest their money through the adoption of their administrations for different formulas, including the leasing, and this is reflected in the decrease and fluctuation of its profits, Theref
... Show MoreThe study aimed at identifying the mental capacity of the research sample and classifying them for the purposes of the study, preparing the scale of cognitive control of the subject of teaching methods of sports education, preparing educational units by establishing the question network for the subject of the teaching methods of sports education, and adopting the experimental method by experimental design workers (2×2) for the two groups The limits of the research community are represented by third-stage students of the Department of Physical Education and Sports Science in the morning study of the College of Knowledge, the Community University, which continues in the regular working hours of the year (2019-2020) adult Their number
... Show MoreAbstract
This study aims to identify the empathy of University Students, as well as the significant differences in sympathy in terms of gender and specialization. To achieve the aims of the study, a scale of empathy was administered to a sample of (450) students collected randomly from Baghdad university. The results showed that the study sample has a level of empathy. There is a significant difference between males and females in empathy, in favor of the female students. There is no significant difference in empathy in terms of specialization (scientific, humanities), and the interaction between males and females. The study came out with a number of recommendations and suggestions.
This paper proposed a new method for network self-fault management (NSFM) based on two technologies: intelligent agent to automate fault management tasks, and Windows Management Instrumentations (WMI) to identify the fault faster when resources are independent (different type of devices). The proposed network self-fault management reduced the load of network traffic by reducing the request and response between the server and client, which achieves less downtime for each node in state of fault occurring in the client. The performance of the proposed system is measured by three measures: efficiency, availability, and reliability. A high efficiency average is obtained depending on the faults occurred in the system which reaches to
... Show MoreAddition of bioactive materials such as Titanium oxide (TiO2), and incorporation of bio inert ceramic such as alumina (Al2O3), into polyetheretherketone (PEEK) has been adopted as an effective approach to improve bone-implant interfaces. In this paper, hot pressing technique has been adopted as a production method. This technique gave a homogenous distribution of the additive materials in the proposed composite biomaterial. Different compositions and compounding temperatures have been applied to all samples. Mechanical properties and animal model have been studied in all different production conditions. The results of these new TiO2/Al2O3/PEEK biocomposites with different
... Show MoreThe world is keeping pace with evolution in all its fields as a result of scientists' pursuit of continuous scientific and technological development. This evolution included the sports field, which had a large space in the aspect of development and for all disciplines, Therefore, it's reflected today in what we see of records and advanced achievements in sporting events and activities. The development in the field of sports was the result of scientific research (Hussein and Jawad., 2022), where the interest in the training process has become one of the most important pillars of the development of achievement (Neamah and Altay., 2020). The shooting sport has also witnessed a remarkable development due to the diversity and development of its
... Show MoreThe COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T
... Show More