Preferred Language
Articles
/
bsj-8362
AlexNet Convolutional Neural Network Architecture with Cosine and Hamming Similarity/Distance Measures for Fingerprint Biometric Matching
...Show More Authors

In information security, fingerprint verification is one of the most common recent approaches for verifying human identity through a distinctive pattern. The verification process works by comparing a pair of fingerprint templates and identifying the similarity/matching among them. Several research studies have utilized different techniques for the matching process such as fuzzy vault and image filtering approaches. Yet, these approaches are still suffering from the imprecise articulation of the biometrics’ interesting patterns. The emergence of deep learning architectures such as the Convolutional Neural Network (CNN) has been extensively used for image processing and object detection tasks and showed an outstanding performance compared to traditional image filtering techniques. This paper aimed to utilize a specific CNN architecture known as AlexNet for the fingerprint-matching task. Using such an architecture, this study has extracted the significant features of the fingerprint image, generated a key based on such a biometric feature of the image, and stored it in a reference database. Then, using Cosine similarity and Hamming Distance measures, the testing fingerprints have been matched with a reference. Using the FVC2002 database, the proposed method showed a False Acceptance Rate (FAR) of 2.09% and a False Rejection Rate (FRR) of 2.81%. Comparing these results against other studies that utilized traditional approaches such as the Fuzzy Vault has demonstrated the efficacy of CNN in terms of fingerprint matching. It is also emphasizing the usefulness of using Cosine similarity and Hamming Distance in terms of matching.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Key Exchange Management by using Neural Network Synchronization
...Show More Authors

The paper presents a neural synchronization into intensive study in order to address challenges preventing from adopting it as an alternative key exchange algorithm. The results obtained from the implementation of neural synchronization with this proposed system address two challenges: namely the verification of establishing the synchronization between the two neural networks, and the public initiation of the input vector for each party. Solutions are presented and mathematical model is developed and presented, and as this proposed system focuses on stream cipher; a system of LFSRs (linear feedback shift registers) has been used with a balanced memory to generate the key. The initializations of these LFSRs are neural weights after achiev

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 01 2024
Journal Name
International Journal Of Engineering In Computer Science
Human biometric identification: Application and evaluation
...Show More Authors

View Publication
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
Artificial Neural Network Models to Predict the Cost and Time of Wastewater Projects
...Show More Authors

Infrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Jun 05 2011
Journal Name
Baghdad Science Journal
Applying Quran Security and Hamming CodesFor Preventing of Text Modification
...Show More Authors

The widespread of internet allover the world, in addition to the increasing of the huge number of users that they exchanged important information over it highlights the need for a new methods to protect these important information from intruders' corruption or modification. This paper suggests a new method that ensures that the texts of a given document cannot be modified by the intruders. This method mainly consists of mixture of three steps. The first step which barrows some concepts of "Quran" security system to detect some type of change(s) occur in a given text. Where a key of each paragraph in the text is extracted from a group of letters in that paragraph which occur as multiply of a given prime number. This step cannot detect the ch

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Artificial Neural Network and Box- Jenkins Models to Predict the Number of Patients with Hypertension in Kalar
...Show More Authors

    Artificial Neural Network (ANN) is widely used in many complex applications. Artificial neural network is a statistical intelligent technique resembling the characteristic of the human neural network.  The prediction of time series from the important topics in statistical sciences to assist administrations in the planning and make the accurate decisions, so the aim of this study is to analysis the monthly hypertension in Kalar for the period (January 2011- June 2018) by applying an autoregressive –integrated- moving average model  and artificial neural networks and choose the best and most efficient model for patients with hypertension in Kalar through the comparison between neural networks and Box- Je

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Enhancing the Delta Training Rule for a Single Layer Feedforward Heteroassociative Memory Neural Network
...Show More Authors

In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.

Publication Date
Fri Jul 19 2024
Journal Name
An International Journal Of Optimization And Control: Theories & Applications (ijocta)
Design optimal neural network based on new LM training algorithm for solving 3D - PDEs
...Show More Authors

In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
Artificial neural network model for predicting the desulfurization efficiency of Al-Ahdab crude oil
...Show More Authors

View Publication Preview PDF
Scopus (9)
Crossref (10)
Scopus Crossref
Publication Date
Mon Jun 17 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Study of Positive and Negative Parity States in 114Te nucleus by the Interacting Boson Model .IBM by Neural Network(Back propagation multi-layer neural network) .
...Show More Authors

Positive and negative parity states for 114Te have been studied applying the vibration al limit U(5) of Interacting boson model (IBM- 1 ) . The present results have shown their good agreement with experimental data in addition to the determination of the spin/parity of new energy levels are not assigned experimentally as the levels 0+2 and 5+1 and the levels 3"1 and 5-1 . Then back propagation multiLayer neural network used for positive and negative parity states for 114Te and shown their membership to the Vibration limit U(5) the network implemented by MATLAB system.

View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Sustainable Chemistry And Pharmacy
A sustainable approach to utilize olive pips for the sorption of lead ions: Numerical modeling with aid of artificial neural network
...Show More Authors

Scopus (23)
Crossref (17)
Scopus Clarivate Crossref