Preferred Language
Articles
/
bsj-8362
AlexNet Convolutional Neural Network Architecture with Cosine and Hamming Similarity/Distance Measures for Fingerprint Biometric Matching

In information security, fingerprint verification is one of the most common recent approaches for verifying human identity through a distinctive pattern. The verification process works by comparing a pair of fingerprint templates and identifying the similarity/matching among them. Several research studies have utilized different techniques for the matching process such as fuzzy vault and image filtering approaches. Yet, these approaches are still suffering from the imprecise articulation of the biometrics’ interesting patterns. The emergence of deep learning architectures such as the Convolutional Neural Network (CNN) has been extensively used for image processing and object detection tasks and showed an outstanding performance compared to traditional image filtering techniques. This paper aimed to utilize a specific CNN architecture known as AlexNet for the fingerprint-matching task. Using such an architecture, this study has extracted the significant features of the fingerprint image, generated a key based on such a biometric feature of the image, and stored it in a reference database. Then, using Cosine similarity and Hamming Distance measures, the testing fingerprints have been matched with a reference. Using the FVC2002 database, the proposed method showed a False Acceptance Rate (FAR) of 2.09% and a False Rejection Rate (FRR) of 2.81%. Comparing these results against other studies that utilized traditional approaches such as the Fuzzy Vault has demonstrated the efficacy of CNN in terms of fingerprint matching. It is also emphasizing the usefulness of using Cosine similarity and Hamming Distance in terms of matching.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 13 2021
Journal Name
Iraqi Journal Of Science
MRI Probabilistic Neural Network Screening System: a benign and malignant recognition case study

This work is aimed to design a system which is able to diagnose two types of tumors in a human brain (benign and malignant), using curvelet transform and probabilistic neural network. Our proposed method follows an approach in which the stages are preprocessing using Gaussian filter, segmentation using fuzzy c-means and feature extraction using curvelet transform. These features are trained and tested the probabilistic neural network. Curvelet transform is to extract the feature of MRI images. The proposed screening technique has successfully detected the brain cancer from MRI images of an almost 100% recognition rate accuracy.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
A Review on Face Detection Based on Convolution Neural Network Techniques

     Face detection is one of the important applications of biometric technology and image processing. Convolutional neural networks (CNN) have been successfully used with great results in the areas of image processing as well as pattern recognition. In the recent years, deep learning techniques specifically CNN techniques have achieved marvellous accuracy rates on face detection field. Therefore, this study provides a comprehensive analysis of face detection research and applications that use various CNN methods and algorithms. This paper presents ten of the most recent studies and illustrate the achieved performance of each method. 

Scopus (6)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Oct 29 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Optimization Techniques for Human Multi-Biometric Recognition System

Researchers are increasingly using multimodal biometrics to strengthen the security of biometric applications. In this study, a strong multimodal human identification model was developed to address the growing problem of spoofing attacks in biometric security systems. Through the use of metaheuristic optimization methods, such as the Genetic Algorithm(GA), Ant Colony Optimization(ACO), and Particle Swarm Optimization (PSO) for feature selection, this unique model incorporates three biometric modalities: face, iris, and fingerprint. Image pre-processing, feature extraction, critical image feature selection, and multibiometric recognition are the four main steps in the workflow of the system. To determine its performance, the model wa

... Show More
Crossref
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
Artificial Neural Network Models to Predict the Cost and Time of Wastewater Projects

Infrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed Oct 28 2020
Journal Name
Iraqi Journal Of Science
Robust Blind Watermarking Technique Against Geometric Attacks for Fingerprint Image Using DTCWT-DCT

In this research paper, a new blind and robust fingerprint image watermarking scheme based on a combination of dual-tree complex wavelet transform (DTCWT) and discrete cosine transform (DCT) domains is demonstrated. The major concern is to afford a solution in reducing the consequence of geometric attacks. It is due to the fingerprint features that may be impacted by the incorporated watermark, fingerprint rotations, and displacements that result in multiple feature sets. To integrate the bits of the watermark sequence into a differential process, two DCT-transformed sub-vectors are implemented. The initial sub-vectors were obtained by sub-sampling in the host fingerprint image of both real and imaginary parts of the DTCWT wavelet coeffi

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jul 01 2012
Journal Name
2012 International Symposium On Innovations In Intelligent Systems And Applications
Scopus (5)
Crossref (3)
Scopus Crossref
View Publication
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Artificial Neural Network and Box- Jenkins Models to Predict the Number of Patients with Hypertension in Kalar

    Artificial Neural Network (ANN) is widely used in many complex applications. Artificial neural network is a statistical intelligent technique resembling the characteristic of the human neural network.  The prediction of time series from the important topics in statistical sciences to assist administrations in the planning and make the accurate decisions, so the aim of this study is to analysis the monthly hypertension in Kalar for the period (January 2011- June 2018) by applying an autoregressive –integrated- moving average model  and artificial neural networks and choose the best and most efficient model for patients with hypertension in Kalar through the comparison between neural networks and Box- Je

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Human Face Recognition Based on Local Ternary Pattern and Singular Value Decomposition

There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into

... Show More
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Enhancing the Delta Training Rule for a Single Layer Feedforward Heteroassociative Memory Neural Network

In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.

Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
Scopus (7)
Crossref (6)
Scopus Crossref
View Publication Preview PDF