The physical, mechanical, electrical and thermal properties containing (Viscosity, curing, adhesion force, Tensile strength, Lap shear strength, Resistively, Electrical conductivity and flammability) of adhesive material that prepared from Nitrocellulose reinforced with graphite particles and aluminum streat. A comparison is made between the properties of adhesive material with varying percentage of graphite powder (0%, 25%, 30%, 35%, 40%) to find out the effect of reinforcement on the adhesive material. The ability of property an electrical was studied through the measurement of conductivity a function of temperature varying. The results of comparison have clearly shown that the increasing of content of the filler material (graphite weight) after limit ratio determined (32%) in material prepare lead to yielding the (CN) material to concept of granular agglomeration. The mechanical properties decrease when graphite weight ratio increases. Electrical conductivity and flammability increases with graphite weight percentage increases, while the electrical conductivity decreases with increases of temperature. The adherent topography of some physically tested Specimens was studied using optical microscopy.
A tungsten inert gas (TIG) welding is one of the most popular kinds of welding used to join metals mainly for aluminum alloys. However, many challenges may be met with this kind of joining process; these challenges arise from decay of mechanical properties of welded materials. In the present study, an attempt was made to enhancing the mechanical properties of TIG weld joint of 6061-T6 aluminum alloy by hardening the surfaces using shoot peening technique. To optimize the shoot peening process three times of exposure (5, 10, and 15) min. was used. All peened and unpeened, and welded and unwelded samples were characterized by metallographic test to indicate the phase transformation and modification in microstructure occurring d
... Show MoreThe different parameters on mechanical and microstructural properties of aluminium alloy 6061-T6 Friction stir-welded (FSW) joints were investigated in the present study. Different welded specimens were produced by employing variable rotating speeds and welding speeds. Tensile strength of the produced joints was tested at room temperature and the the effecincy was assessed, it was 75% of the base metal at rotational speed 1500 rpm and weld speed 50 mm/min. Hardness of various zones of FSW welds are presented and analyzed by means of brinell hardness number . Besides to thess tests the bending properties investigat
... Show MoreBackground: Polyetheretherketone (PEEK) is a promising implant material due to its superior biomechanical strength. However, due to its hydrophobic nature and lack of cellular adhesion properties, it has poor integration with bone tissue. Methods: A fractional CO2 laser was used with various parameters for surface texturing of PEEK substrate to enhance its surface properties. An optical microscope and field-emission scanning electron microscope (FESEM) were used to examine the surface morphology of untextured and laser-textured samples. Energy dispersive X-ray spectroscopy (EDX) was performed to determine the effect of the laser on the microstructure of PEEK. Surface microroughness, atomic force microscopy (AFM), and wettability were invest
... Show MoreABSTRACT Background: Improving the properties of heat- cured and self-cured acrylic resin have been studied by many researchers. However, little studies concerned with visible light cured resin (VLCR) improved through addition of nanofiller are available. The purpose of this study was to evaluate some properties of (VLCR) after addition of SiO2 nanofiller. Materials and Methods: SiO2 nanofiller were added to (VLCR) tray material after being dissolved in tetrahydrofuran (THF) solvent. According to the pilot study 2% SiO2 nanofiller addition exhibited better properties than the other percentages (1%, 3%). The main study conducted involved (100) specimens divided into 5 groups according to the test included. (20) Specimens were selecte
... Show MoreWith the advancement of modern radiotherapy technology, radiation dose and dose distribution have significantly improved. as part of Natural development, interest has recently been renewed by treatment, especially in the use of heavy charged particles, because these radiation types serve theoretical advantages in all biological and physical aspects. The interactions of alpha particle with matter were studied and the stopping powers of alpha particle with Bone Tissue were calculated by using Zeigler’s formula and SRIM software, also the Range for this particle were calculated by using Mat lab language for (0.01-1000) MeV alpha energy.
Background: The PMMA polymer denture base materials are low mechanical properties, adaptation of the denture base to underlying tissue is important for retention and stability of denture. The aim of the study was toevaluate the effect of mixtureZrO2-Al2O3 nanoparticles on impact strength, transverse strength, hardness, roughness, denture base adaptation of heat cured acrylic resin denture base material. Materials and methods: One hundred (100) specimens were prepared, the specimens were divided into five groups (20 specimens to each) according to the test type, each group was subdivided in to two subgroups (control and experimental) each subgroup consist of 10 specimens, the experimental group included mixture of 2% (ZrO2-Al2O3ratio2:1) b
... Show MoreSulphated zirconia (SZ) is one of the most important solid acid catalysts was synthesize at different operating conditions, different calcination temperature and sulfonating time has been used. The prepared catalyst was distinguished by X-ray Diffraction (XRD), particle size and morphology of catalyst were checked by atomic force microscopy (AFM) and scanning electron microscopy (SEM) respectively, in addition to analysis by (DTA) Differential thermally and Energy Dispersive X-Ray (EDX). Finally, the N2 adsorption-desorption was used to measure the surface area (BET) and pore volume. High degree of tetragonal crystallinity was obtained 90 %, and surface area of 169 m2/g and pore volume of 0.39 cm3g-1 at 600°C calcination temperature for 3
... Show MoreElectrical properties were studied for Pectin/PVA graphene composites films and the effect of aqueous interaction on their properties. The conductivity and the dielectric constant of this composite are important because Polysaccharide like pectin is increasingly being used in biomedical applications and as nanoparticles coating materials. The Dielectric and conductivity of composite films were compared in dry and wet condition the differences in the results were attributed to the water molecules and the hydrogen bond which connect the three composite compounds (Pectin, PVA and Graphene) together. These connections were allowed the hydrogen and hydroxyl group’s migrations in the composite super molecules. On the other hand, graphene was pr
... Show MoreThis study designed to prepare ultrafine apixaban (APX) o/w nanoemulsion (NE) based gel with droplet size below 50 nm as a good method for transdermal APX delivery without using permeation enhancer, alternatively, the formulation components itself act as permeation enhancer. APX, a potent oral anticoagulant drug that selectively and directly inhibit coagulation factor Xa, was selected as a good candidate for transdermal delivery as it displays poor water solubility (0.028 mg/mL) and low bioavailability (50%). APX-NE gel was prepared using triacetin, triton-x-100 and carbitol as oil phase, surfactant and cosurfactant respectively, while Carbopol 940 used as a gelling agent. Ex vivo permeation of APX-NE gel through human stratum c
... Show More