With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor sets, resulting in four trained models. The test sets are used to evaluate the trained models using many evaluation metrics (accuracy, TPR, FNR, PPR, FDR). Results of Google Net model indicate the high performance of the designed models with 99.34% and 99.76% accuracies for indoor and outdoor datasets, respectively. For Mobile Net models, the result accuracies are 99.27% and 99.68% for indoor and outdoor sets, respectively. The proposed methodology is compared with similar ones in the field of object recognition and image classification, and the comparative study proves the transcendence of the propsed system.
A study of the effects of the discharge (sputtering) currents (60-75 mA) and the thickness of copper target (0.037, 0.055 and 0.085 mm) on the prepared samples was performed. These samples were deposited with pure copper on a glass substrate using dc magnetron sputtering with a magnetic flux density of 150 gauss at the center. The effects of these two parameters were studied on the height, diameter, and size of the deposition copper grains as well as the roughness of surface samples using atomic force microscopy (AFM).The results of this study showed that it is possible to control the specifications of copper grains by changing the discharge currents and the thickness of the target material. The increase in discharge curre
... Show MoreAbstract
This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per
... Show MoreIn the context of normed space, Banach's fixed point theorem for mapping is studied in this paper. This idea is generalized in Banach's classical fixed-point theory. Fixed point theory explains many situations where maps provide great answers through an amazing combination of mathematical analysis. Picard- Lendell's theorem, Picard's theorem, implicit function theorem, and other results are created by other mathematicians later using this fixed-point theorem. We have come up with ideas that Banach's theorem can be used to easily deduce many well-known fixed-point theorems. Extending the Banach contraction principle to include metric space with modular spaces has been included in some recent research, the aim of study proves some pro
... Show MoreThe simulation is the oldest theory in art, since it appeared in the Greek aesthetic thought of the philosopher Plato, as we find in many of the thinkers and philosophers over a wide period of time to reach our world today. Our fascination with art in general and design art in particular is due to the creativity and innovations of the artist through the simulation, as well as the peculiarities in this simulation, which give objects signs and signals that may have an echo that sometimes does not exist in their physical reality.
The real representation of life and design construction, descriptions of the expression of each of them in the form of intellectual construction and the ideas of producti
... Show More The research aims to (identify the applications of pedagogy in art education), the research community included, art education for the primary stage, so the community consisted of (8) main areas in art education, either the research sample was chosen, two main areas (objectives, and content), and included the research methodology (descriptive and analytical), the researcher built the research tool represented (the validity form of the tool) and presented to a group of experts to indicate its validity as well as to measure its stability, To show the results, the researcher used the percentage, and the researcher recommended - modifying the curriculum every period of time, such as every four years, others
Research summary
Muslim scholars have established fundamental rules for deriving rulings to be a methodology for every mujtahid who wants to extract rulings from his reliable sources, and one of the most prominent fundamental rules on which many rulings are built is the permissible and the many rulings related to it.
Leaving what is permissible on its own terms sometimes causes embarrassment and distress in some cases, so we need something that restricts it. In our Islamic law, many legal rulings are embodied in which the restriction of what is permissible is in the public interest, or to relieve embarrassment in public.
Because of the importance of this fundamentalist rule, and the difference in some
... Show MoreIn this paper, simulation studies and applications of the New Weibull-Inverse Lomax (NWIL) distribution were presented. In the simulation studies, different sample sizes ranging from 30, 50, 100, 200, 300, to 500 were considered. Also, 1,000 replications were considered for the experiment. NWIL is a fat tail distribution. Higher moments are not easily derived except with some approximations. However, the estimates have higher precisions with low variances. Finally, the usefulness of the NWIL distribution was illustrated by fitting two data sets