With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor sets, resulting in four trained models. The test sets are used to evaluate the trained models using many evaluation metrics (accuracy, TPR, FNR, PPR, FDR). Results of Google Net model indicate the high performance of the designed models with 99.34% and 99.76% accuracies for indoor and outdoor datasets, respectively. For Mobile Net models, the result accuracies are 99.27% and 99.68% for indoor and outdoor sets, respectively. The proposed methodology is compared with similar ones in the field of object recognition and image classification, and the comparative study proves the transcendence of the propsed system.
Internet of Things (IoT) is a recent technology paradigm that creates a global network of machines and devices that are capable of communicating with each other. Security cameras, sensors, vehicles, buildings, and software are examples of devices that can exchange data between each other. IoT is recognized as one of the most important areas of future technologies and is gaining vast recognition in a wide range of applications and fields related to smart homes and cities, military, education, hospitals, homeland security systems, transportation and autonomous connected cars, agriculture, intelligent shopping systems, and other modern technologies. This book explores the most important IoT automated and smart applications to help the reader u
... Show MoreCopper nanoparticles (CuNPs) were prepared with different diameters by sonoelectrodeposition technique using Electrodeposition process coupled with high-power ultrasound horn (Sonoelectrodeposition). The particle diameter of the CuNPs was adjusted by varying CuSO4 solution acidity (pH) and current density. The morphology and structure of the CuNPs were examined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the size of the produced copper nanoparticles ranged between 22 to 77 nm, where the diameter of CuNPs increases with reduction the solution acidity from 0.5 to 1.5 pH and increasing the current density of the deposition from 100 to 400 nm. Finally the produced CuNPs were pressed to fabricate disc
... Show MoreObjective. Glass-ionomer and resin-modified glass-ionomer cements are versatile materials with the ability to form a direct bond with tooth tissues. The aim of this study was to formulate a novel class of dental bio-interactive restorative material (pRMGIC) based on resin-modified glass-ionomer cements via the inclusion of an organophosphorus monomer, ethylene glycol methacrylate phosphate, with a potential to improve the mechanical properties and also function as a reparative restorative material. Methods. pRMGIC was formulated with modification of the resin phase by forming mixes of ethylene glycol methacrylate phosphate (EGMP; 0–40%wt) and 2-hydroxyethyl methacrylate monomer into the liquid phase of a RMGIC (Fuji II LC, GC Corp.).
... Show MoreNanostructural cupric oxide (CuO) films were prepared on Si and glass substrate by pulsed laser deposition technique (PLD) using laser Nd:YAG, using different laser pulses energies from 200 to 600 mJ. The X-ray diffraction pattern (XRD) of the films showed a polycrystalline structure with a monoclinic symmetry and preferred orientation toward (111) plane with nano structure. The crystallite size was increasing with increasing of laser pulse energy. Optical properties was characterized by using UV–vis spectrometer in the wave lengthrange (200-1100) nm at room temperature. The results showed that the transmission spectrum decreases with the laser pulses energy increase. Sensitivity of NO2 gas at different operating temperatures, (50°C,
... Show MoreAbstract
Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia
... Show MoreThis article investigates how an appropriate chaotic map (Logistic, Tent, Henon, Sine...) should be selected taking into consideration its advantages and disadvantages in regard to a picture encipherment. Does the selection of an appropriate map depend on the image properties? The proposed system shows relevant properties of the image influence in the evaluation process of the selected chaotic map. The first chapter discusses the main principles of chaos theory, its applicability to image encryption including various sorts of chaotic maps and their math. Also this research explores the factors that determine security and efficiency of such a map. Hence the approach presents practical standpoint to the extent that certain chaos maps will bec
... Show More