The two parameters of Exponential-Rayleigh distribution were estimated using the maximum likelihood estimation method (MLE) for progressively censoring data. To find estimated values for these two scale parameters using real data for COVID-19 which was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. Then the Chi-square test was utilized to determine if the sample (data) corresponded with the Exponential-Rayleigh distribution (ER). Employing the nonlinear membership function (s-function) to find fuzzy numbers for these parameters estimators. Then utilizing the ranking function transforms the fuzzy numbers into crisp numbers. Finally, using mean square error (MSE) to compare the outcomes of the survival function before and after fuzzy work. The period of study was (May, June, July, and August). The number of patients who entered the study during the above period was 1058 patients. Six cases have been ruled out including: The number of prisoners was 26. The number of people with negative swabs was 48. The number of patients who exit status was unknown was 29. The number of patients who escaped from the hospital was 2. The number of patients transferred to other hospitals was 35. The number of patients discharged at their responsibility was 133. Then the number of patients who entered the (study) hospital which is the sample size becomes (n=785). The number of patients who died during the period of study was (m=88). The number of patients who survived during the study period was (n-m=697).
ABSTRICT:
This study is concerned with the estimation of constant and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es
... Show MoreThe problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.
The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreThe COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is fre
... Show MoreCoronavirus disease 2019 (COVID-19) is a flu-like infection caused by a novel virus known as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). After the widespread around the world, it was announced by the World Health Organization (WHO) as a global pandemic. The symptoms of COVID-19 may arise within 2 weeks and the severity ranged from mild with signs of respiratory infection to severe cases of organ failure and even death. Management of COVID-19 patients includes supportive treatment and pharmacological medications expected to be effective with no definitive cure of the disease. The aims of this study are highlighting the management protocol and supportive therapy especially vitamin D and manifesting the clinical symptoms b
... Show MoreBACKGROUND: COVID-19 is resulted from severe acute respiratory syndrome coronavirus 2, which initiated in China in December 2019. Parasites are efficient immune modulators because their ability to stimulate an immune response in infected persons. AIM: This study aims to detect if there is a probable relationship between intestinal parasitic infections and COVID-19. METHODS: Ninety patients consulted at Al-Kindy Teaching Hospital (Al-Shifa center) from October 2020 till April 2021, confirmed infection with COVID-19 by PCR. Stool examination was done for detecting intestinal parasites. RESULTS: From 90 patients, males were 63 (70%), with median age 32 years, while females were 27 (30%), with age 24–44 years. Asymptomatic pati
... Show MoreWe examine 10 hypothetical patients suffering from some of the symptoms of COVID 19 (modified) using topological concepts on topological spaces created from equality and similarity interactions and our information system. This is determined by the degree of accuracy obtained by weighing the value of the lower and upper figures. In practice, this approach has become clearer.