In this paper, a novel coronavirus (COVID-19) model is proposed and investigated. In fact, the pandemic spread through a close contact between infected people and other people but sometimes the infected people could show two cases; the first is symptomatic and the other is asymptomatic (carrier) as the source of the risk. The outbreak of Covid-19 virus is described by a mathematical model dividing the population into four classes. The first class represents the susceptible people who are unaware of the disease. The second class refers to the susceptible people who are aware of the epidemic by media coverage. The third class is the carrier individuals (asymptomatic) and the fourth class represents the infected individuals. The existence, uniqueness and bounded-ness of the solutions of the model are discussed. All possible equilibrium points are determined. The locally asymptotically stable of the model is studied. Suitable Lyapunov functions are used to investigate the globally asymptotical stability of the model. Finally, numerical simulation is carried out to confirm the analytical results and to understand the effect of varying the parameters of how the disease spreads.
The dynamical behavior of a two-dimensional continuous time dynamical system describing by a prey predator model is investigated. By means of constructing suitable Lyapunov functional, sufficient condition is derived for the global asymptotic stability of the positive equilibrium of the system. The Hopf bifurcation analysis is carried out. The numerical simulations are used to study the effect of periodic forcing in two different parameters. The results of simulations show that the model under the effects of periodic forcing in two different parameters, with or without phase difference, could exhibit chaotic dynamics for realistic and biologically feasible parametric values.
Kaolin ceramic compacts sintered at various temperatures are investigated to correlate their microstructure with their acoustic parameters. Pulse velocity , attenuation coefficient, and quality factor values are ducts from ultrasonic attenuation measurements, moreover, the dynamical mechanics parameters( Young and shear modules) exhibited an explicit relationship with the acoustic quality factor.inturn are related to the microstructure which is heavily affected by the sintering mechanism.
The world is currently challenging the serious effects of the pandemic of the Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Data on pediatric COVID are rare and scattered in the literature. In this article, we presented the updated knowledge on the pediatric COVID-19 from different aspects. We hope it will increase the awareness of the pediatricians and health care professionals on this pandemic.
This article examines and proposes a dietary chain model with a prey shelter and alternative food sources. It is anticipated that mid-predators' availability is positively correlated with the number of refuges. The solution's existence and exclusivity are examined. It is established that the solution is bounded. It is explored whether all potential equilibrium points exist and are locally stable. The Lyapunov approach is used to investigate the equilibrium points' worldwide stability. Utilizing a Sotomayor theorem application, local bifurcation is studied. Numerical simulation is used to better comprehend the dynamics of the model and define the control set of parameters.
The aim of this article is to study the dynamical behavior of an eco-epidemiological model. A prey-predator model comprising infectious disease in prey species and stage structure in predator species is suggested and studied. Presumed that the prey species growing logistically in the absence of predator and the ferocity process happened by Lotka-Volterra functional response. The existence, uniqueness, and boundedness of the solution of the model are investigated. The stability constraints of all equilibrium points are determined. The constraints of persistence of the model are established. The local bifurcation near every equilibrium point is analyzed. The global dynamics of the model are investigated numerically and confronted with the obt
... Show MoreCoronavirus: (COVID-19) is a recently discovered viral disease caused by a new strain of coronavirus.
The majority of patients with corona-virus infections will have a mild-moderate respiratory disease that recovers without special care. Most often, the elderly, and others with chronic medical conditions such as asthma, coronary disease, respiratory illness, and malignancy are seriously ill.
COVID-19 is spread mostly by salivary droplets or nasal secretions when an infected person coughs or sneezes.
COVID-19 causes severe acute respiratory illness (SARS-COV-2). The first incidence was recorded in Wuhan, China, in 2019. Since then it spreads leading to a pandemic.
... Show MoreThis study aimed to evaluate the effect of the COVID-19 outbreak on emergencies and pain among orthodontic patients attending a teaching hospital. The study was conducted among orthodontic patients receiving active orthodontic treatment or in a retention period at the College of Dentistry, University of Baghdad, Iraq. Their participation was voluntary, and they filled out an Arabic-translated questionnaire. The survey included general information, orthodontic problems, and a numerical rating scale for pain assessment. We used descriptive and inferential statistics (frequencies and intersecting frequencies), chi-square test and linear regression. Out of 75 orthodontic patients, only 54 (15 males and 39 females) were included in the s
... Show More‎ Since the first outbreak in Wuhan, China, in December 31, 2019, COVID-19 pandemic ‎has been spreading to many countries in the world. The ongoing COVID-19 pandemic has caused a ‎major global crisis, with 554,767 total confirmed cases, 484,570 total recovered cases, and ‎‎12,306 deaths in Iraq as of February 2, 2020. In the absence of any effective therapeutics or drugs ‎and with an unknown epidemiological life cycle, predictive mathematical models can aid in ‎the understanding of both control and management of coronavirus disease. Among the important ‎factors that helped the rapid spread of the ep
... Show MoreIn this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.