M. domestica is the most important insect that transmit pathogens for diseases in the world. The use of nanotechnology is eco-friendly method in control pests. The study aims to investigate the feasibility of bio-manufacturing nanocapsules of fungal secondary metabolites in order to improve the efficiency of metabolite and assess their inhibitory effect on the acetylcholine esterase enzyme in housefly larvae. An equal mixture of organic solvents, ethyl acetate and dichloromethane, was used to extract the metabolic products of the fungus M. anisopliae, (PEG4000) and chitosan was used in the preparation of nanocapsules. The results of the DLS granular size assay showed that the size of the extract particles and the size of the chitosan and (PEG 4000) nanocapsules were 610, 217 and 188 nm, respectively. The SEM images showed that the diameter of the extract and the nanocapsules chitosan and polyethylene glycol 4000 reached a rate 547.5, 17.8 and 26.2 nm, respectively. The FTIR showed that the extract of the second products of the fungus contains functional groups like: alkynes and alkenes, amines, carboxyl and aromatic groups, while the presence of groups of phenols, alcohol, amines, alkenes, and alkyl halides was recorded for nanocapsules of chitosan and PEG. The results showed that the extract of fungal metabolic and nanocapsules has an inhibitory effect on acetylcholinesterase enzyme and reached the highest inhibition rate 53.2 ,36.3,18.2% when treated with nanocapsules PEG at a concentration 500 ppm, extract of fungal metabolites at a concentration 50,000 ppm, chitosan nanocapsules at a concentration 500 ppm respectively. It is clear that acetylcholinesterase inhibition is one of the mechanisms of fungi metabolic action and the nanocapsules prepared from them.
In this research, the problem of multi- objective modal transport was formulated with mixed constraints to find the optimal solution. The foggy approach of the Multi-objective Transfer Model (MOTP) was applied. There are three objectives to reduce costs to the minimum cost of transportation, administrative cost and cost of the goods. The linear membership function, the Exponential membership function, and the Hyperbolic membership function. Where the proposed model was used in the General Company for the manufacture of grain to reduce the cost of transport to the minimum and to find the best plan to transfer the product according to the restrictions imposed on the model.
In this paper, the dynamic behaviour of the stage-structure prey-predator fractional-order derivative system is considered and discussed. In this model, the Crowley–Martin functional response describes the interaction between mature preys with a predator. e existence, uniqueness, non-negativity, and the boundedness of solutions are proved. All possible equilibrium points of this system are investigated. e sucient conditions of local stability of equilibrium points for the considered system are determined. Finally, numerical simulation results are carried out to conrm the theoretical results.
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show MoreNew Fe(II),Co(II),Ni(II),Cu(II) and Zn(II) Schiff base complexes which have the molar ratio 2:1 metal to ligand of the general formula [M2( L) X4] (where L=bis(2-methyl furfuraldene)-4-4`-methylene bis(cyclo-hexylamine) ) were prepared by the reaction of the metal salts with the ligand of Schiff base derived from the condensation of 2:1 molar ratio of 2-acetyl furan and 4-4`-methylene bis (cyclohexylamine). The complexes were characterized by elemental analysis using atomic absorption spectrophotometer ,molar conductance measurements, infrared, electronic spectra,and magnetic susceptibility measurement. These studies revealed binuclear omplexes. The metal(II) ion in these complexes have four coordination sites giving the most ex
... Show MoreDeep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreThe goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.
The present work introduces, external morphological study of the leafhopper Neoalitarus
fenestratus Herrich-Schäeffer (Deltocephalinae:Oposiini), particularly the male genitalia
which were dissected and illustrated.
High smoke emissions, nitrogen oxide and particulate matter typically produced by diesel engines. Diminishing the exhausted emissions without doing any significant changes in their mechanical configuration is a challenging subject. Thus, adding hydrogen to the traditional fuel would be the best practical choice to ameliorate diesel engines performance and reduce emissions. The air hydrogen mixer is an essential part of converting the diesel engine to work under dual fuel mode (hydrogen-diesel) without any engine modification. In this study, the Air-hydrogen mixer is developed to get a homogenous mixture for hydrogen with air and a stoichiometric air-fuel ratio according to the speed of the engine. The mixer depends on the balance between th
... Show More