The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabets are detected using the mathematical algorithm of the morphological gradient. After that, the images are passed to the CNN architecture. The available database of Arabic handwritten alphabets on Kaggle is utilized for examining the model. This database consists of 16,800 images divided into two datasets: 13,440 images for training and 3,360 for validation. As a result, the model gives a remarkable accuracy equal to 99.02%.
The present study aims to remove nickel ions from solution of the simulated wastewater using (Laminaria saccharina) algae as a biosorbent material. Effects of experimental parameters such as temperature at (20 - 40) C⁰, pH at (3 - 7) at time (10 - 120) min on the removal efficiency were studied.
Box-Wilson method was adopted to obtain a relationship between the above three experimental parameters and removal percentage of the nickel ions. The experimental data were fitted to second order polynomial model, and the optimum conditions for the removal process of nickel ions were obtained.
The highest removal percentage of nickel ions obtained was 98.8 %, at best operating conditions (Temperature 35 C⁰, pH 5 and Time 10 min).
A load-shedding controller suitable for small to medium size loads is designed and implemented based on preprogrammed priorities and power consumption for individual loads. The main controller decides if a particular load can be switched ON or not according to the amount of available power generation, load consumption and loads priorities. When themaximum allowed power consumption is reached and the user want to deliver power to additional load, the controller will decide if this particular load should be denied receiving power if its priority is low. Otherwise, it can be granted to receive power if its priority is high and in this case lower priority loads are automatically switched OFF in order not to overload the power generation. The
... Show MoreBackground: The use of minerals in treatment of different diseases is as old as man himself. zinc is the most famous trace mineral related to male sexual function. Oligoasthenozoospermic subfertile patients were treated with zinc sulphate for three months.
Objectives: Aim of the research is to investigate the role of Zinc and if it affects the abnormalities of some semen parameters and to study the possible role of pharmaceutical preperations of zinc in amelioration of male subfertility as well as to assess the ability of Zinc to induce changes in the serum and semen zinc levels in addition to the levels of reproductive hormones (FSH and Testosterone).
Type of the study:
... Show MoreCarbon-fiber-reinforced polymer (CFRP) is widely acknowledged as a leading advanced material structure, offering superior properties compared to traditional materials, and has found diverse applications in several industrial sectors, such as that of automobiles, aircrafts, and power plants. However, the production of CFRP composites is prone to fabrication problems, leading to structural defects arising from cycling and aging processes. Identifying these defects at an early stage is crucial to prevent service issues that could result in catastrophic failures. Hence, routine inspection and maintenance are crucial to prevent system collapse. To achieve this objective, conventional nondestructive testing (NDT) methods are utilized to i
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreA newly developed analytical method was conducted for the determination of Ketotifen fumarate (KTF) in pharmaceuticals drugs via quenching of continuous fluorescence of 9(10H)-Acridone (ACD). The method was applied using flow injection system of a new homemade ISNAG fluorimeter with fluorescence measurements at ± 90◦ via 2×4 solar cell. The calibration graph was linear in the range of 1-45 mmol/L, with correlation coefficient r = 0.9762 and the limit of detection 29.785 µg/sample from the stepwise dilution for the minimum concentration in the linear dynamic ranged of the calibration graph. The method was successfully applied to the determination of Ketotifen fumarate in two different pharma
... Show MoreFree Radical Copolymerization of Styrene/ Methyl Methacrylate were prepared chemically under Nitrogen ,which was investigated, in the present of Benzoyl Peroxide as Initiator at concentration of 2 × 10-3 molar at 70 °C, which was carried out in Benzene as solvent to a certain low conversion . FT-IR spectra were used for determining of the monomer reactivity ratios ,which was obtained by employing the conventional linearization method of Fineman-Ross (F-R) and Kelen-Tüdos (K- T). The experimental results showed the average value for the Styrene r1 / Methyl Methacrylate r2 system, Sty r1 = 0.45 , MMA r2 = 0.38 in the (F–R) Method and r1 = 0.49 , r2 = 0.35 in the (K–T) Method, The Results of this indicated show the random distri
... Show More