Biodegradation is utilizing microorganisms to degrade materials into products that are safe for the
environment, such as carbon dioxide, water, and biomass. The current study aims to isolate and characterize
bacteria with polyethylene terephthalate (PET) degradation ability isolated from Shatt al-Arab water and
sewage from Basra, the bacteria were identified as Klebsiella pneumonia. According to the findings, the
isolates showed a highly significant difference in degradation of PET (24% during 7 days) and the percent of
degradation increased to 46% at 4 weeks compared to the control. The study also involved determining the
optimum temperature of K. pneumonia growth, which was 37°C, while the preferred pH was 7-8. The research
revealed that PET biodegradation by K. pneumonia can be used as a suitable and environmentally friendly
tool.
Two samples of (Ag NPs-zeolite) nanocomposite thin films have been prepared by easy hydrothermal method for 4 hours and 8 hours inside the hydrothermal autoclave at temperatures of 100°C. The two samples were used in a photoelectrochemical cell as a photocatalyst inside a cell consisting of three electrodes: the working electrode photoanode (AgNPs-zeolite), platinum as a cathode electrode, and Ag/AgCl as a reference electrode, to study the performance of AgNPs-zeolite under dark current and 473 nm laser light for water splitting. The results show the high performance of an eight-hour sample with high crystallinity compared with a four-hour sample as a reliable photocatalyst to generate hydrogen for renewable energies.
Pulsed laser ablation in liquid (PLAL) has become an increasingly important technique for metals production and metal oxides nanoparticles (NPs) and others. This technique has its many advantages compared with other conventional techniques (physical and chemical). This work was devoted for production of zirconia (ZrO2) nanoparticles via PLAL technique from a solid zirconium target immersed in a wet environment in order to study the effect of this environment on the optical properties and structure of ZrO2 nanoparticles. The solutions which used for this purpose is distilled water (D.W). The produces NPs were characterized by mean of many tests such as UV-visible (UV-Vis.), transmission electron microscope (TEM) and Z-Potential. The UV-Vis.
... Show MoreIn the present study, the removal of zinc from synthetic waste water using emulsion liquid membrane extraction technique was investigated. Synthetic surfactant solution is used as the emulsifying agent. Diphenylthiocarbazon (ditizone) was used as the extracting agent dissolved in carbon tetrachloride as the organic solvent and sulfuric acid is used as the stripping agent. The parameters that influence the extraction percentage of Zn+2 were studied. These are the ratio of volume of organic solvent to volume of aqueous feed (0.5-4), ratio of volume of surfactant solution to volume of aqueous feed (0.2-1.6), pH of the aqueous feed solution (5-10), mixing intensity (100-1000) rpm, concentration of extracting agent (20-400) ppm, surfactant co
... Show MoreWater provision is sensitive to climate change, and agricultural production and food supply are sensitive to water availability. Water scarcity affects food security and agricultural economic development through changes in agricultural production and changes in the composition of produced goods. Recent droughts also led to a decrease in the volume of water allocated to agriculture, which led to a decrease in total agricultural production and exports, and this has subsequent impacts on food security and economic development. The research aimed to measure the impact of water scarcity on agricultural economic development for the period 1990-2022. The research included three behavioral equations with three endogenous variables: the cult
... Show MoreIraq, home of the Tigris and Euphrates rivers, has survived an extreme deficiency of surface water assets over the years. The gap is due to the decline of the Iraqi water share every year, as well as a high demand for water use from different sectors, particularly agriculture.
Dam development has long given significant economic benefits to Iraq in circulating low‐priced electricity and supporting low‐income farmers by supplying them with a free irrigation system (Zakaria et al, 2012). This encouraged domestic consumption and investment.
Despite the fact that numerous advantages are expected from dam construction, it should be painstakingly assessed, utilizing cost
lar water heating systems with heat pipes of three diameter groups of 16, 22 and 28.5 mm. The first and third groups had evaporator lengths of 1150, 1300 and 1550 mm. The second group had an additional length of 1800 mm. all heat pipes were of fixed condenser length of 200 mm. Ethanol at 50% fill charge ratio of the evaporator volume was used as the heat pipes working fluid. Each heat pipe condenser section was inserted in a storage tank and the evaporator section inserted into an evacuated glass tube of the Owens- Illinois type. The combined heat pipe and evacuated glass tube form an active solar collector of a unique design.
The resulting ten solar water heating systems were tested outdoors under the meteorological conditions of Bag
Sediment samples were collected from main water processing and supply plants in Baghdad, and tested for radioactivity from both natural and artificial sources. These stations are: East Dijla (Tigris), Al-Kadisia, Al-Karama, Al-Rasheed, Al-Sader, Al-Wathba, and Al-Wihda supply stations. Qualitative measurements were made, and the results showed that most sediments exhibited natural radioactive level and sometimes less than the international regular standards. Specially, K-40 and Ra-226 results were much less than the standards for radioactive concentrations. Ac-228 concentration was found rather than Th-232 (in Al-Sader and Al-Wihda samples) but with low concentrations of about 10-15 Bg/kg and detection confidence ~45% , and Ce-141 and Be
... Show MoreTo evaluate and improve the efficiency of photovoltaic solar modules connected with linear pipes for water supply, a three-dimensional numerical simulation is created and simulated via commercial software (Ansys-Fluent). The optimization utilizes the principles of the 1st and 2nd laws of thermodynamics by employing the Response Surface Method (RSM). Various design parameters, including the coolant inlet velocity, tube diameter, panel dimensions, and solar radiation intensity, are systematically varied to investigate their impacts on energetic and exergitic efficiencies and destroyed exergy. The relationship between the design parameters and the system responses is validated through the development of a predictive model. Both single and mult
... Show MoreWater supply projects (WSP) requires high plan information, specialized capabilities, capable human resources, and high administrative capacity. However, in the developing countries, particularly in Iraq, these projects experience a lack of a large number of these necessities, which shows the need to identify the critical success factors (CSFs). Accordingly, the objectives of this research are to investigate the CSFs for WSP and their significance among the construction (public and private) and education sectors. To achieve this, first we have carried out a comprehensive literature review of the CSFs for WSP. Second, we administrated a questionnaire survey to 260 construction experts