A study of non-diatom algal species composition in twelve sites from Greater Zab River path within
Erbil Province, was carried out from April 2021 to January 2022 with monthly sample collection in twelve studied sites. Among them site 4,5,6,7 and 9 are the first for algal study in this area. The 112 different species of algae belong to 33 genera, 25 families, 13 orders and 4 divisions have been identified. The predominant genera included Spirogyra and Cosmarium 17, 8 taxa respectively. 13 taxa were new recorded to Iraqi
Kurdistan algal flora and 9 of them were new recorded to Iraqi algal flora: Botryosphaerella sudetica, Muriella magna, Gloeotaenium loitlesbergianum, Apiocystis brauniana, Anabaena oscillarioides, C. distentum, C.
tutum, C. contractum var. minutum, kirchneriella irregularis, Oedogonium suecicum f. australe, Coelastrum indicum, Oocystis lacustris, and Pediastrum braunii. Also, there were three new genera for Iraqi algal flora which including: Botryosphaerella, Muriella and Apiocystis. A brief description as well as the measurement is given for each species. Water temperatures ranged from 17.3 to 20.08 ºC, hydrogen ion concentration and
electrical conductivity value ranged from 7.44 to 7.88 and 433.20 to 721.56 μS.cm-1 for all studied sites
respectively. The aim of this study is to identify algal taxa in studied sites.
Dam operation and management have become more complex recently because of the need for considering hydraulic structure sustainability and environmental protect on. An Earthfill dam that includes a powerhouse system is considered as a significant multipurpose hydraulic structure. Understanding the effects of running hydropower plant turbines on the dam body is one of the major safety concerns for earthfill dams. In this research, dynamic analysis of earthfill dam, integrated with a hydropower plant system containing six vertical Kaplan turbines (i.e., Haditha dam), is investigated. In the first stage of the study, ANSYS-CFX was used to represent one vertical Kaplan turbine unit by designing a three-dimensional (3-D) finite element (F
... Show MoreThe electronic characteristics, including the density of state and bond length, in addition to the spectroscopic properties such as IR spectrum and Raman scattering, as a function of the frequency of Sn10O16, C24O6, and hybrid junction (Sn10O16/C24O6) were studied. The methodology uses DFT for all electron levels with the hybrid function B3-LYP (Becke level, 3-parameters, Lee–Yang-Parr), with 6-311G (p,d) basis set, and Stuttgart/Dresden (SDD) basis set, using Gaussian 09 theoretical calculations. The geometrical structures were calculated by Gaussian view 05 as a supplementary program. The band gap was calculated and compared to the measured valu
... Show MoreThis research is devoted to investigating the thermal buckling analysis behaviour of laminated composite plates subjected to uniform and non-uniform temperature fields by applying an analytical model based on a refined plate theory (RPT) with five unknown independent variables. The theory accounts for the parabolic distribution of the transverse shear strains through the plate thickness and satisfies the zero-traction boundary condition on the surface without using shear correction factors; hence a shear correction factor is not required. The governing differential equations and associated boundary conditions are derived by using the virtual work principle and solved via Navier-type analytical procedure to obtain critica
... Show MoreNuclear structure of 29-34Mg isotopes toward neutron dripline have been investigated using shell model with Skyrme-Hartree–Fock calculations. In particular nuclear densities for proton, neutron, mass and charge densities with their corresponding rms radii, neutron skin thicknesses and inelastic electron scattering form factors are calculated for positive low-lying states. The deduced results are discussed for the transverse form factor and compared with the available experimental data. It has been confirmed that the combining shell model with Hartree-Fock mean field method with Skyrme interaction can accommodate very well the nuclear excitation properties and can reach a highly descriptive and predictive power when investiga
... Show MoreIn this research prepared two composite materials , the first prepared from unsaturated polyester resin (UP) , which is a matrix , and aluminum oxide (Al2O3) , and the second prepared from unsaturated polyester resin and aluminum oxide and copper oxide (CuO) , the two composites materials (Alone and Hybrid) of percentage weight (5,10,15)% . All samples were prepared by hand layup process, and study the electrical and thermal conductivity. The results showed decrease electrical conductivity from (10 - 2.39) ×10-15 for (Up+ Al2O3) and from (10 - 2.06)×10-15 for (Up+ Al2O3+ CuO) .But increase thermal conductivity from( 0.17 - 0.505) for (Up+ Al2O3) and from (0.17 - 0.489) for (Up+ Al2O3+ CuO).
This study aimed at evaluating the torsional capacity of reinforced concrete (RC) beams externally wrapped with fiber reinforced polymer (FRP) materials. An analytical model was described and used as a new computational procedure based on the softened truss model (STM) to predict the torsional behavior of RC beams strengthened with FRP. The proposed analytical model was validated with the existing experimental data for rectangular sections strengthened with FRP materials and considering torque-twist relationship and crack pattern at failure. The confined concrete behavior, in the case of FRP wrapping, was considered in the constitutive laws of concrete in the model. Then, an efficient algorithm was developed in MATLAB environment t
... Show MoreThis paper aims to study the effect of circular Y-shaped fin arrangement to improve the low thermal response rates of a double-tube heat exchanger containing Paraffin phase change material (PCM). ANSYS software is employed to perform the computational fluid dynamic (CFD) simulations of the heat exchanger, including fluid flow, heat transfer, and the phase change process. The optimum state of the fin configuration is derived through sensitivity analysis by evaluating the geometrical parameters of the Y-shaped fin. For the same height of the fins (10 mm), the solidification time is reduced by almost 22%, and the discharging rate is enhanced by almost 26% using Y-shaped fins compared with the straight fins. The results demonstrate that the sol
... Show MoreThe Coronavirus Disease 2019 (COVID-19) pandemic has caused an unprecedented disruption in medical education and healthcare systems worldwide. The disease can cause life-threatening conditions and it presents challenges for medical education, as instructors must deliver lectures safely, while ensuring the integrity and continuity of the medical education process. It is therefore important to assess the usability of online learning methods, and to determine their feasibility and adequacy for medical students. We aimed to provide an overview of the situation experienced by medical students during the COVID-19 pandemic, and to determine the knowledge, attitudes, and practices of medical students regarding electronic medical education.
... Show More