Preferred Language
Articles
/
bsj-7637
Corrosion Inhibition Efficiency Investigation of Yttrium Oxide Nanoparticles Coated on Carbon Steel Alloy
...Show More Authors

Metal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy(EDX), the physico-chemical characterization of Y2O3NPs was examined. The primary characteristic peak of YOY at 565 cm-1, which indicates the synthesis of nanoparticles, is seen in the FT-IR spectra. The XRD pattern showed that a single phase cubic structure of YONPs with an Ia-3 space group had formed. SEM was used to examine the surface morphology. The composition of Yttrium and oxygen in Y2O3NPs was determined to be 78.74% and 21.26%, respectively, according to the EDX results. The anticorrosive behavior was tested by polarization curve in 18.204% CaCl2 solution at five temperatures in the range 293- 313 K. Various concentrations 0.15 0.26 and 0.37 of N Y2O3NPs coating on the carbon steel surface were applied using the electrophoresis deposition method. The obtained results indicated that Y2O3NPs formed a protective film acts as a physical barrier for the protection of steel alloy. Additionally, corrosion protection efficiency values of 0.26 N Y2O3NPs coating were superior to that of 0.15 and 0.37 N Y2O3NPs coating, respectively.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Nov 01 2019
Journal Name
International Journal Of Engineering
Structural Behavior of Axially Loaded Composite Concrete-steel Plate Shear Walls
...Show More Authors

Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Ieee Access
Sensing Performance of Modified Single Mode Optical Fiber Coated With Nanomaterials-Based Ammonia Sensors Operated in the C-Band
...Show More Authors

View Publication
Scopus (15)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Sun Apr 01 2007
Journal Name
Journal Of Engineering
CURVATURE DUCTILITYOF REINFORCED CONCRETE BEAMSECTIONS STIFFENED WITH STEEL PLATES
...Show More Authors

Publication Date
Tue Apr 01 2003
Journal Name
Abhath Al- Yarmouk [basic Sciences And Engineering]
Methodology for selecting Nonprestressed Steel in Post- Tensioning Beams
...Show More Authors

Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
An Investigation to the Abrasive Wear in Pipes Used for Oil Industry
...Show More Authors

The work reported in this study focusing on the abrasive wear behavior for three types of pipes used in oil industries (Carbone steel, Alloy steel and Stainless steel) using a wear apparatus for dry and wet tests, manufactured according to ASTM G65. Silica sand with
hardness (1000-1100) HV was used as abrasive material. The abrasive wear of these pipes has been measured experimentally by measuring the wear rate for each case under different sliding speeds, applied loads, and sand conditions (dry or wet). All tests have been conducted using sand of particle size (200-425) µm, ambient temperature of 34.5 °C and humidity 22% (Lab conditions).
The results show that the material loss due to abrasive wear increased monotonically with

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Mar 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Oxidation of Toluene to Benzoic Acid Catalyzed by Modified Vanadium Oxide
...Show More Authors

A variety of oxides were examined as additives to a V2O5/Al2O3 catalyst in order to enhance the catalytic performance for the vapor phase oxidation of toluene to benzoic acid. It was found that the modification with MoO3 greatly promoted the little reaction leading to improve catalyst performance in terms of toluene conversion and benzoic acid selectivity. The effect of catalyst surface area, catalyst promoters, reaction temperature, O2/toluene, steam/toluene, space velocity, and catalyst composition to catalyst performance were examined in order to increase the benzoic acid selectivity and yield.

View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Characterization of nickel oxide nanocatalyst electrodes for an alkaline fuel cell
...Show More Authors
Abstract<p>In this paper had been studied the characterization of the nanocatalyst (NiO) Mesh electrodes. For fuel cell. The catalyst is prepared and also the electrodes The structural were studied through the analysis of X-ray diffraction of the prepared nanocatalyst for determining the yielding phase and atomic force microscope to identify the roughness of prepared catalyst surface, Use has been nanocatalyst led to optimization of cell voltage, current densities & power for a fuel cell.</p>
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Applied Sciences And Nanotechnology
Homogeneity of Lithium Metasilicate-Copper Oxide Glass-Ceramics by Weibull Modulus
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Canadian Journal Of Physics
Synthesis, characterization, photoluminescence, and antibacterial activities of silica-graphene oxide composites
...Show More Authors

In this research, a novel thin film Si-GO10 and nanopowders Si-GO30 of silica-graphene oxide (GO) composite were prepared via the sol–gel method and deposited on glass substrates using spray pyrolysis. X-ray diffraction (XRD) results showed a relatively strong peak in the graphite layer that corresponds to the (002) plane. Transmission electron microscope (TEM) images showed that SiO2 nanoparticles were randomly distributed on the surface of GO plates, and the particle size in these nanopowders was below 50 nm. Field emission scanning electron microscopy (FESEM) analysis demonstrated that silica nanoparticles on the surface of GO plates exhibited almost spherical and rod-like nanoparticle shape, which in tur

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Sep 17 2021
Journal Name
Canadian Journal Of Physics
Synthesis, characterization, photoluminescence, and antibacterial activities of silica-graphene oxide composites
...Show More Authors

In this research, a novel thin film Si-GO10 and nanopowders Si-GO30 of silica-graphene oxide (GO) composite were prepared via the sol–gel method and deposited on glass substrates using spray pyrolysis. X-ray diffraction (XRD) results showed a relatively strong peak in the graphite layer that corresponds to the (002) plane. Transmission electron microscope (TEM) images showed that SiO2 nanoparticles were randomly distributed on the surface of GO plates, and the particle size in these nanopowders was below 50 nm. Field emission scanning electron microscopy (FESEM) analysis demonstrated that silica nanoparticles on the surface of GO plates exhibited almost spherical and rod-like nanoparticle shape, which in turn confirmed the formation of Si

... Show More
Preview PDF