In this paper, we proposed to zoom Volterra equations system Altfazlah linear complementarity of the first type in this approximation were first forming functions notch Baschtdam matrix and then we discussed the approach and stability, to notch functions
In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations nonhomogeneous of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.
An Alternating Directions Implicit method is presented to solve the homogeneous heat diffusion equation when the governing equation is a bi-harmonic equation (X) based on Alternative Direction Implicit (ADI). Numerical results are compared with other results obtained by other numerical (explicit and implicit) methods. We apply these methods it two examples (X): the first one, we apply explicit when the temperature .
This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.
In this paper, the finite difference method is used to solve fractional hyperbolic partial differential equations, by modifying the associated explicit and implicit difference methods used to solve fractional partial differential equation. A comparison with the exact solution is presented and the results are given in tabulated form in order to give a good comparison with the exact solution
In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum
... Show MoreIn this Paper, we proposed two new predictor corrector methods for solving Kepler's equation in hyperbolic case using quadrature formula which plays an important and significant rule in the evaluation of the integrals. The two procedures are developed that, in two or three iterations, solve the hyperbolic orbit equation in a very efficient manner, and to an accuracy that proves to be always better than 10-15. The solution is examined with and with grid size , using the first guesses hyperbolic eccentric anomaly is and , where is the eccentricity and is the hyperbolic mean anomaly.
This paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.
Finally, all algori
... Show More