This study examines experimentally the performance of a horizontal triple concentric tube heat exchanger TCTHE made of copper metal using water as cooling fluid and oil-40 as hot fluid. Hot fluid enters the inner annular tube of the TCTHE in a direction at a temperature of 50, 60 and 70 oC and a flow rate of 20 l/hr. On the other hand, the cooling fluid enters the inner tube and the outer annular tube in the reverse direction (counter current flow) at a temperature of 25 oC and flow rates of 10, 15, 20, 25, 30 and 35 l/hr. The TCTHE is composed of three copper tubes with outer diameters of 34.925 mm, 22.25 mm, and 9.525 mm, and thicknesses of 1.27 mm, 1.143 mm, and 0.762 mm, respectively. TCTHE tube's length was 670 mm. Nusselt number, overall heat transfer coefficient, convective heat transfer coefficient (CHTC), friction factor and pressure drop were measured from the obtained experimental results and plotted in graphs against Reynold number and volumetric flow rate of water. These parameters appeared good results in the cooling process. Nusselt numbers increased linearly with DIW flow rate for both C1 and C2 reaching maximum values of 38.25 and 14.64 respectively. CHTC increased linearly with the DIW flow rate for both C1 and C2 reaching maximum values of 2934.3 and 871.7 respectively. Overall heat transfer coefficient of DIW reached maximum values of 296.36 and 251.4 at 35 l/hr for C1 and C2, respectively. Friction factor DIW in C1 and C2 decreased with the volumetric flow rate increases, reaching minimum values of 0.04 and 0.25 respectively. Pressure drop of DIW increased linearly with flow rate reaching maximum values of 81.4 and 4.31 for C1 and C2 respectively. This in turn leads to reduced TCTHE length and size leading to a decrease in the construction cost of the heat exchanger.
The surface finish of the machining part is the mostly important characteristics of products quality and its indispensable customers’ requirement. Taguchi robust parameters designs for optimizing for surface finish in turning of 7025 AL-Alloy using carbide cutting tool has been utilized in this paper. Three machining variables namely; the machining speeds (1600, 1900, and 2200) rpm, depth of cut (0.25, 0.50, 0.75) mm and the feed rates (0.12, 0.18, 0.24) mm/min utilized in the experiments. The other variables were considered as constants. The mean surface finish was utilized as a measuring of surface quality. The results clarified that increasing the speeds reduce the surface roughness, while it rises with increasing the depths and fee
... Show MoreLinear motor offers several features in many applications that require linear motion. Nevertheless, the presence of cogging force can deteriorate the thrust of a permanent magnet linear motor. Using several methodologies, a design of synchronous single sided linear iron-core motor was proposed. According to exact formulas with surface-mounted magnets and concentrated winding specification, which are relying on geometrical parameters. Two-dimensional performance analysis of the designed model and its multi-objective optimization were accomplished as a method to reduce the motor cogging force using MAXWELL ANSYS. The optimum model design results showed that the maximum force ripple was approximatrly reduced by 81.24%compared to the origina
... Show MoreBackground: Platelet-rich fibrin (PRF) is a simple, low cost and minimally invasive way to obtain a natural concentration of autologous growth factors and is currently being widely experimented in different fields of medicine for its ability to aid the regeneration of tissue with a low healing potential. Fields of application are sports medicine, orthopedics, dentistry, dermatology, ophthalmology, plastic and maxillofacial surgery, etc. The rationale for using platelets in so many fields for the treatment of different tissues is because PLTs constitute a reservoir of critical GFs and cytokines, which may govern and regulate the tissue healing process that is quite similar in all kinds of tissues. Materials and Methods: Screw titanium implan
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camadulensis leaves) by organic solvents. the effects of the main operating parameters were studied; type of solvent (n-hexane and ethanol), time to reach equilibrium, the temperature (45°C to 65°C) for n-hexane and (45°C to 75°C) for ethanol, solvent to solid ratio (5:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm) and the particle size (0.5 to 2.5 cm) of fresh leaves to find the best processing conditions for the achieving maximum oil yield. The concentration of eucalyptus oil in solvent was measured by using UV-spectrophotometer. The results (for n-hexane) showed that the agitation speed of 900 rpm, temperature 65°C with solvent to soli
... Show MoreSamples of Iraqi bentonitic sediments, representing local montmorillonite brought from Traifawi region near the Syrian border. Mineralogical the samples were characterized as low grade of Ca-smectite, particle size, chemical analysis, XRD, and BET surface area analyses of the samples were carried out to examine the structure of bentonite before and after acid activation. The goal is to prepare a bleaching earth for edible oil production. Iraqi Bentonite was beneficiated and activated by series of physical and chemical steps, using 4N & 6N concentration of hydrochloric acid and at a temperature of 70-80 ° C. Surface area and pore volume of the samples were determined to assess the bleaching power
The research aims to shed light on the role of artificial intelligence in achieving Ambidexterity performance, as banks work to take advantage of modern technologies, artificial intelligence is an innovation that is expected to have a long-term impact, as well as banks can improve the quality of their services and analyze data to ensure that customers' future needs are understood. . The Bank of Baghdad and the Middle East Bank were chosen as a community for the study because they had a role in the economic development of the country as well as their active role in the banking market. A sample of department managers was highlighted in collecting data and extracting results based on the checklist, which is the main tool for the stu
... Show MoreBackground: tooth debonding was one of the major reasons for denture repair. With the use of recently introduced thermoplastic denture base materials the problem of tooth debonding increased due to the nature of the bond between these materials and the acrylic teeth. This study was aimed to assess the bond of the acrylic teeth to conventional heat cure acrylic resin and to thermoplastic resin denture base material and methods to enhance it. Materials and methods: acrylic resin teeth were bonded to heat cure acrylic resin with and without wetting the ridge laps of the teeth with monomer and acrylic teeth with prefabricated retentive holes, unmodified and modified, in their ridge laps were processed with Valplast thermoplastic resin denture b
... Show More