Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the skip connections are redesigned to give a more reliable fusion of features. MSRD-UNet allows aggregation of contextual information, and the network goes without needing to increase the number of parameters or required floating-point operations (FLOPS). The proposed model was evaluated on three multimodal datasets: polyp, skin lesion, and nuclei segmentation. The obtained results proved that the MSDR-Unet model outperforms several state-of-the-art U-Net-based methods.
High frequencies of multidrug resistant organisms were observed worldwide in intensive care units which is a warning as to use the only few effective antimicrobials wisely to reduce selective pressure on sensitive strains.
The aim of the current study is to asses the compliance of the currently followed antibiotic prescribing pattern in the intensive care unit in an Iraqi hospital with the international guidelines.A cross-sectional study was done in the intensive care unit (ICU) of the Surgical Specialties Hospital, Medical City in Bagdad from the 30th of November 2011 to the 5th of May 2012.Patients were followed until they were discharged or died to see any change in condition, response to drugs, devices u
... Show MoreBACKGROUND: Mental health problems are reflected and linked to human behavior in many aspects. Medical students are susceptible to a wide variety of events that compromise their mental well-being, social life as well as their academic achievements. AIM: This study aimed to find the impact of social support on medical students’ behavior in Iraq via assessing their depression, anxiety, and stress status. METHODS: A cross-sectional online survey-based study targeted all medical students in Iraq. The employed questionnaires covered mental health status of participants by evaluating their perceptions of depression, anxiety, and stress using. Data were analyzed using the Statistical Analysis System. RESULTS: The study revealed a signifi
... Show MoreBackground: Self-medication is a practice or action taken by individuals for themselves in order to achieve and maintain health, as well as to avoid and protect against disease. The aim of this study is to evaluate the knowledge, attitudes, and practice of self-medication among medical students at Sudan International University.
Subjects & Methods: This was a prospective study that involved 288 out of 1000 students in the Faculty of Medicine at Sudan International University. Data were collected using a self-administered questionnaire from January to March 2022 to evaluate the self-medication knowledge, attitude, and practice among first, second, and third-ye
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreThe current research aims to train students to take benefit of their studies to analyze and taste the artistic works as one of the most important components of the academic structure for students specializing in visual arts; then to activate this during training them the methods of teaching. Consequently, the capabilities of mind maps were employed as a tool that would be through freeing each student to analyze a model of artistic work and think about his analytical principles according to what he knows. Then, a start-up with a new stage revolves around the possibility of transforming this analysis into a teaching style by thinking about how the student would do. The same person who undertook the technical analysis should offer this work
... Show MoreAbstract
This research deals will the declared production planning operation in the general company of planting oils, which have great role in production operations management who had built mathematical model for correct non-linear programming according to discounting operation during raw materials or half-made materials purchasing operation which concentration of six main products by company but discount included just three products of raw materials, and there were six months taken from the 1st half of 2014 as a planning period has been chosen . Simulated annealing algorithm application on non-linear model which been more difficulty than possible solution when imposed restric
... Show MoreWhen optimizing the performance of neural network-based chatbots, determining the optimizer is one of the most important aspects. Optimizers primarily control the adjustment of model parameters such as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM have become a standard choice and are widely used for their invariant parameter updates' magnitudes concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several advantages. This study aims to compare and examine the effects of these optimizers on the chatbot CST dataset. The effectiveness of each optimizer is evaluat
... Show MoreThe study aimed to investigate the relationship between the multiple intelligence and the numerical sense. The chosen population of the study was the 4th secondary stage students. The sample consisted of 400 female and male student. The researcher utilized two test; multiple intelligence test which include three categories of intelligence (logical-mathematical, spatial, and linguistics) consisted of (36) item, and the numerical sense test that consisted of (44) item. The two tests were constructed by the researcher himself. The psychometric properties of the test were also verified. The results showed that there was a correlation between the multiple intelligence and the numerical sense as well as the students’ means scores
... Show MoreSocial media is known as detectors platform that are used to measure the activities of the users in the real world. However, the huge and unfiltered feed of messages posted on social media trigger social warnings, particularly when these messages contain hate speech towards specific individual or community. The negative effect of these messages on individuals or the society at large is of great concern to governments and non-governmental organizations. Word clouds provide a simple and efficient means of visually transferring the most common words from text documents. This research aims to develop a word cloud model based on hateful words on online social media environment such as Google News. Several steps are involved including data acq
... Show More
