Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the skip connections are redesigned to give a more reliable fusion of features. MSRD-UNet allows aggregation of contextual information, and the network goes without needing to increase the number of parameters or required floating-point operations (FLOPS). The proposed model was evaluated on three multimodal datasets: polyp, skin lesion, and nuclei segmentation. The obtained results proved that the MSDR-Unet model outperforms several state-of-the-art U-Net-based methods.
The article reflects the results of the analysis of the use of metaphors when creating the image of the main character of the story by D. Rubina "You and me under the peach clouds" - a pet, a dog named Kondraty. Through metaphorization, the image of the dog is filled by the author with purely human qualities, thus passing into the category of a full member of the family. The article is a continuation of the study of the work of D. I. Rubina.
Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreSome new norms need to be adapted due to COVID-19 pandemic period where people need to wear masks, wash their hands frequently, maintain social distancing, and avoid going out unless necessary. Therefore, educational institutions were closed to minimize the spread of COVID-19. As a result of this, online education was adapted to substitute face-to-face learning. Therefore, this study aimed to assess the Malaysian university students’ adaptation to the new norms, knowledge and practices toward COVID-19, besides, their attitudes toward online learning. A convenient sampling technique was used to recruit 500 Malaysian university students from January to February 2021 through social media. For data collection, all students
... Show MoreEducation around the world has been negatively affected by the new coronavirus disease (COVID-19) pandemic. Many institutions had to transition to distance learning in compliance with the enforced safety measures. Distance learning might work well for settings with stable internet connections, professional technical teams, and basic implementation of technology in education. In contrast, distance learning faces serious challenges in less fortunate settings with inferior infrastructure. This report aims to shed light on the immediate action steps taken at a leading pharmacy school in Iraq to accommodate for the enforced changes in pharmacy education. The University of Baghdad College of Pharmacy went from less than minimal technology impl
... Show MoreResearch in the field of English language as a foreign language (EFL) has been consistently highlighted the need for communicative competence skills among students. Accompanied by the validated positive impact of technologies on students’ skills’, this study aims to explore the strategies used by EFL students in enhancing their communicative competence using digital platforms and identify the factors of developing communicative competence using digital platforms (linguistic factors, environmental factors, psychological factors, and university-related factors). The mixed-method research design was utilized to obtain data from Iraqi undergraduate EFL students. The study was conducted in the Iraqi University in Baghdad Iraq. EFL undergradu
... Show MoreComputational Thinking (CT) is very useful in the process of solving everyday problems for undergraduates. In terms of content, computational thinking involves solving problems, studying data patterns, deconstructing problems using algorithms and procedures, doing simulations, computer modeling, and reasoning about abstract things. However, there is a lack of studies dealing with it and its skills that can be developed and utilized in the field of information and technology used in learning and teaching. The descriptive research method was used, and a test research tool was prepared to measure the level of (CT) consisting of (24) items of the type of multiple-choice to measure the level of "CT". The research study group consists of
... Show MoreAbstract
Objective(s): To evaluate blended learning in nursing education at the Middle Region in Iraq.
Methodology: A descriptive study, using evaluation approach, is conducted to evaluate blended learning in nursing education in Middle Region in Iraq from September 26th, 2021 to March 22nd, 2022. The study is carried out at two Colleges of Nursing at the University of Baghdad and University of Tikrit in Iraq. A convenient, non-probability, sample of (60) undergraduate nursing students is selected. The sample is comprised of (30) student from each college of nursing, Self-report questionnaire is constructed from the literature, for e
... Show MoreIn this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreIn this work, two cone-inverted cylindrical and cross-hybrid dielectric resonator antennas are stacked and excited by the coaxial probe method with an operating standard resonant frequency of 5.438 GHz. A drawback of these standard Dielectric Resonator Antennas (DRAs) is their narrow bandwidth. For good antenna performance, a stacked DR geometry and a thick dielectric substrate having a low dielectric constant are desired since this provides large bandwidth, better radiation power, reduces conductor loss and nonappearance of surface waves. Many approaches, such as changing the shape of the dielectric resonator, have been used to enhance bandwidth. Using DRA, having the lowest dielectric constant, increases the bandwidth and the electroma
... Show More