Preferred Language
Articles
/
bsj-7559
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
...Show More Authors

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the skip connections are redesigned to give a more reliable fusion of features. MSRD-UNet allows aggregation of contextual information, and the network goes without needing to increase the number of parameters or required floating-point operations (FLOPS). The proposed model was evaluated on three multimodal datasets: polyp, skin lesion, and nuclei segmentation. The obtained results proved that the MSDR-Unet model outperforms several state-of-the-art U-Net-based methods.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
A New Model Design for Combating COVID -19 Pandemic Based on SVM and CNN Approaches
...Show More Authors

       In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from      Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (3)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Hybrid CNN-based Recommendation System
...Show More Authors

Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Thu Jan 11 2018
Journal Name
Al-khwarizmi Engineering Journal
Experimental Estimation of Critical Buckling Velocities for Conservative Pipes Conveying Fluid
...Show More Authors

Conservative pipes conveying fluid such as pinned-pinned (p-p), clamped–pinned (c-p) pipes and clamped-clamped (c-c) lose their stability by buckling at certain critical fluid velocities. In order to experimentally evaluate these velocities, high flow-rate pumps that demand complicated fluid circuits must be used.

     This paper studies a new experimental approach based on estimating the critical velocities from the measurement of several fundamental natural frequencies .In this approach low flow-rate pumps and simple fluid circuit can be used.

Experiments were carried out on two pipe models at three different boundary conditions. The results showed that the present approach is more accurate for est

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 01 2019
Journal Name
2019 International Joint Conference On Neural Networks (ijcnn)
A Fast Feature Extraction Algorithm for Image and Video Processing
...Show More Authors

View Publication
Scopus (40)
Crossref (38)
Scopus Clarivate Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Journal Of The College Of Education For Women
Minimum Spanning Tree Algorithm for Skin Cancer Image Object Detection
...Show More Authors

This paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 01 2021
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
OFDM PAPR reduction for image transmission using improved tone reservation
...Show More Authors

High peak to average power ration (PAPR) in orthogonal frequency division multiplexing (OFDM) is an important problem, which increase the cost and complexity of high power amplifiers. One of the techniques used to reduce the PAPR in OFDM system is the tone reservation method (TR). In our work we propose a modified tone reservation method to decrease the PAPR with low complexity compared with the conventional TR method by process the high and low amplitudes at the same time. An image of size 128×128 is used as a source of data that transmitted using OFDM system. The proposed method decrease the PAPR by 2dB compared with conventional method with keeping the performance unchanged. The performance of the proposed method is tested with

... Show More
View Publication
Scopus (8)
Crossref (1)
Scopus Crossref
Publication Date
Tue Dec 11 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Burden of Mothers’ Care for Children with Colostomy at Baghdad Medical City Teaching Hospital
...Show More Authors

Objective(s): To assess the burden of mothers` care for child with colostomy and find out relationships between child and mother socio-demographic data with mothers` burden. Methodology: a descriptive study was conducted from 1 August 2013 to 1 September 2014. The sample consisted of 100 children and their mothers at Baghdad Teaching hospital in Baghdad city. A questionnaire was prepared based on the previous literature review, meeting mothers of children with colostomy, and the Zarit Burden Interview scale. Data has collected through the application of questionnaire and interview techniques. Results: T

... Show More
View Publication Preview PDF
Publication Date
Tue Apr 01 2025
Journal Name
Al-kindy College Medical Journal
Al-Kindy College Medical Journal: An Audit of Publications for One Decade (2015-2024)
...Show More Authors

The Al-Kindy College Medical Journal (KCMJ) is an Iraqi scholarly journal published by the Al-Kindy College of Medicine, University of Baghdad. It was officially founded in 2004. It is a peer-reviewed journal, published in both online and printed forms. It has a mission to offer a publication platform that mirrors recent knowledge and findings in the field of medicine and medical sciences. It publishes various types of articles, including editorial, review article, research article, brief report, case report, and letter to editor. It accepts articles in the English language. It was biannually published till 2021 when it started to launch three issues per year. The journal is registered with numerous partners, including Iraqi Academi

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Oct 05 2025
Journal Name
Mesopotamian Journal Of Computer Science
DGEN: A Dynamic Generative Encryption Network for Adaptive and Secure Image Processing
...Show More Authors

Cyber-attacks keep growing. Because of that, we need stronger ways to protect pictures. This paper talks about DGEN, a Dynamic Generative Encryption Network. It mixes Generative Adversarial Networks with a key system that can change with context. The method may potentially mean it can adjust itself when new threats appear, instead of a fixed lock like AES. It tries to block brute‑force, statistical tricks, or quantum attacks. The design adds randomness, uses learning, and makes keys that depend on each image. That should give very good security, some flexibility, and keep compute cost low. Tests still ran on several public image sets. Results show DGEN beats AES, chaos tricks, and other GAN ideas. Entropy reached 7.99 bits per pix

... Show More
View Publication
Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Journal Of The College Of Education For Women
Detection of selected cells in multi choice sheets
...Show More Authors

0

View Publication Preview PDF