Preferred Language
Articles
/
bsj-7559
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
...Show More Authors

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the skip connections are redesigned to give a more reliable fusion of features. MSRD-UNet allows aggregation of contextual information, and the network goes without needing to increase the number of parameters or required floating-point operations (FLOPS). The proposed model was evaluated on three multimodal datasets: polyp, skin lesion, and nuclei segmentation. The obtained results proved that the MSDR-Unet model outperforms several state-of-the-art U-Net-based methods.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Mar 11 2019
Journal Name
Al-khwarizmi Engineering Journal
An Investigation Study of Tool Geometry in Single Point Incremental Forming (SPIF) and their effect on Residual Stresses Using ANOVA Model
...Show More Authors

Incremental forming is a flexible sheet metal forming process which is performed by utilizing simple tools to locally deform a sheet of metal along a predefined tool path without using of dies. This work presents the single point incremental forming process for producing pyramid geometry and studies the effect of tool geometry, tool diameter, and spindle speed on the residual stresses. The residual stresses were measured by ORIONRKS 6000 test measuring instrument. This instrument was used with four angles of (0º,15º,30º, and 45º) and the average value of residual stresses was determined, the value of the residual stress in the original blanks was (10.626 MPa). The X-ray diffraction technology was used to measure the residual stresses

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Study the Effect of Different Reinforcements on the Damping Properties of the Polymer Matrix Composite
...Show More Authors

In this research, damping properties for composite materials were evaluated using logarithmic decrement method to study the effect of reinforcements on the damping ratio of the epoxy matrix. Three stages of composites were prepared in this research. The first stage included preparing binary blends of epoxy (EP) and different weight percentages of polysulfide rubber (PSR) (0%, 2.5%, 5%, 7.5% and 10%). It was found that the weight percentage 5% of polysulfide was the best percentage, which gives the best mechanical properties for the blend matrix. The advantage of this blend matrix is that; it mediates between the brittle properties of epoxy and the flexible properties of a blend matrix with the highest percentage of PSR. The second stage

... Show More
View Publication Preview PDF
Publication Date
Thu May 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Numerical Study of Crack Effect on Frequency of Simple Supported Beam
...Show More Authors

In this research the natural frequency of a cracked simple supported beam (the crack is in many places and in different depths) is investigated analytically, experimentally and numerically by ANSYS program, and the results are compared. The beam is made of iron with dimensions of L*W*H= (0.84*0.02* 0.02m), and density = 7680kg/m3, E=200Gpa. A comparison made between analytical results from ANSYS with experimental results, where the biggest error percentage is about (7.2 %) in crack position (42 cm) and (6 mm) depth. Between Rayleigh method with experimental results the biggest error percentage is about (6.4 %) for the same crack position and depth. From the error percentages it could be concluded that the Rayleigh method gives

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Deep Learning Techniques in the Cancer-Related Medical Domain: A Transfer Deep Learning Ensemble Model for Lung Cancer Prediction
...Show More Authors

Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Thu Apr 25 2019
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
STUDY OF THE SYNERGISTIC EFFECT OF BACTERIOCIN PRODUCED FROM Leuconostoc mesenteroides ssp. cremoris With Antibiotics Against Multi Resistance Diarrheal Bacteria: STUDY OF THE SYNERGISTIC EFFECT OF BACTERIOCIN PRODUCED FROM Leuconostoc mesenteroides ssp. cremoris With Antibiotics Against Multi Resistance Diarrheal Bacteria
...Show More Authors

The study included the collection of samples of raw cow milk to isolate Leuconostoc bacteria, samples were sub cultured on De-Man Rogosa Sharpe-Vancomycin medium, the pure colonies were selected and subjected to the cultural and microscopically tests, according to that 25 cocci bacterial isolates were obtained, then isolates were subjected to biochemical tests. Result of tests showed that 12 isolates belong to the genus Leuconostoc out of 25 cocci bacterial isolates, Vitek2 system was used as a supplementary step. Results of final identification showed that 3 sub species were obtained included Leuconostoc mesenteroides ssp. cremoris 9 out of 12 isolates, while it was 2 isolates of Leuconostoc mesenteroides ssp. mesenteroides and one isol

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 01 2012
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Social phobia among Al Qadissya medical student: prevalence, Academic performance and response to different treatments
...Show More Authors

Background: Social phobia (SP) is an inappropriate anxiety; experienced in social situations in which the person feels observed by others and could be criticized by them so he/she attempts to avoid such situations.
Objectives: This study aims to identify the prevalence of (SP) among the medical students, as well as the socio- demographic characters will be investigated.The effect of (SP) on the students that is; their academic performance and the response to different type of treatments.
Methods: Three hundred eighty students of both genders were selected randomly from Al-Qadissia Medical College in Al- Diwania city. These students were interviewed using the International Diagnostic Checklist of ICD.10

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Shadow Removal Using Segmentation Method
...Show More Authors

Shadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.

View Publication Preview PDF
Publication Date
Mon Apr 01 2013
Journal Name
مجلة كلية بغداد للعلوم الاقتصادية الجامعة العدد الخاص بمؤتمر الكلية
A propose method for hiding image into image
...Show More Authors

Publication Date
Mon Jan 01 2024
Journal Name
Journal Of The Faculty Of Medicine Baghdad
The Impact of COVID-19 Infection on Gonadal Hormonal Hunctions in Iraqi Wome: تأثير كوفيد -19 على الدورة الشهرية
...Show More Authors

Background: The COVID-19 pandemic has had effects beyond the respiratory system, impacting health and quality of life. Stress-related to the pandemic has led to temporary menstrual pattern changes in around one-third of women. These changes, likely driven by stress and anxiety, can result in problematic heavy bleeding, causing anemia and negatively affecting women's well-being. This also places a substantial socioeconomic burden on individuals, families, healthcare, and society.

Objectives: This study examined the impact of COVID-19 infection on the hormone levels (estradiol, prolactin, follicle-stimulating hormone, and luteinizing hormone) and heavy menstrual bleeding in Iraqi premenopausal women

... Show More
View Publication
Crossref