Preferred Language
Articles
/
bsj-7543
Newton-Kantorovich Method for Solving One of the Non-Linear Sturm-Liouville Problems

Due to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of applying this method
to solve these problems, a comparison is made in this paper between the Newton-Kantorovich method and the
Adomian decomposition method applied to the same non-linear Sturm-Liouville problems under consideration
in this work. As a result of this comparison, the results of the Newton-Kantorovich method agreed with the
results obtained by applying Adomian’s decomposition method.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Solving Whitham-Broer-Kaup-Like Equations Numerically by using Hybrid Differential Transform Method and Finite Differences Method

This paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.

Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Using Multi-Objective Bat Algorithm for Solving Multi-Objective Non-linear Programming Problem

Human beings are greatly inspired by nature. Nature has the ability to solve very complex problems in its own distinctive way. The problems around us are becoming more and more complex in the real time and at the same instance our mother nature is guiding us to solve these natural problems. Nature gives some of the logical and effective ways to find solutions to these problems. Nature acts as an optimized source for solving the complex problems.  Decomposition is a basic strategy in traditional multi-objective optimization. However, it has not yet been widely used in multi-objective evolutionary optimization.   

Although computational strategies for taking care of Multi-objective Optimization Problems (MOPs) h

... Show More
Scopus (5)
Crossref (7)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Numerical Solution for Linear State Space Systems using Haar Wavelets Method

In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.

Scopus (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Comparing the Sequential Nonlinear least squared Method and Sequential robust M method to estimate the parameters of Two Dimensional sinusoidal signal model:

Estimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust  M method after their development through the use of sequential  approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Efficient Approach for Solving (2+1) D- Differential Equations

     In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.

Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Jul 25 2019
Journal Name
Advances In Intelligent Systems And Computing
Scopus (12)
Crossref (8)
Scopus Crossref
View Publication
Publication Date
Wed Mar 18 2020
Journal Name
Baghdad Science Journal
Solving Linear Volterra – Fredholm Integral Equation of the Second Type Using Linear Programming Method

In this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree  and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those methods i

... Show More
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Jun 01 2017
Journal Name
Chaos, Solitons & Fractals
Crossref (16)
Crossref
View Publication
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
An approximate solution for solving linear system of integral equation with application on "Stiff" problems

An approximate solution of the liner system of ntegral cquations fot both fredholm(SFIEs)and Volterra(SIES)types has been derived using taylor series expansion.The solusion is essentailly

View Publication Preview PDF
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Linear Boundary Value Problem Using Shooting Continuous Explicit Runge-Kutta Method

  In this paper we shall generalize fifth explicit Runge-Kutta Feldberg(ERKF(5)) and Continuous explicit Runge-Kutta (CERK) method using shooting method to solve second order boundary value problem  which can be reduced to order one.These methods we shall call them as shooting Continuous Explicit Runge-Kutta method, the results are computed using matlab program.

View Publication Preview PDF