Wireless Sensor Networks (WSNs) are promoting the spread of the Internet for devices in all areas of
life, which makes it is a promising technology in the future. In the coming days, as attack technologies become
more improved, security will have an important role in WSN. Currently, quantum computers pose a significant
risk to current encryption technologies that work in tandem with intrusion detection systems because it is
difficult to implement quantum properties on sensors due to the resource limitations. In this paper, quantum
computing is used to develop a future-proof, robust, lightweight and resource-conscious approach to sensor
networks. Great emphasis is placed on the concepts of using the BB84 protocol with the AES algorithm in
WSN security. The results of analysis indicated a high level of security between the data by depending on the
generation of secure keys, and reached an accuracy rate of about (80-95) % based on using NIST statistical.
The efficiency of the work increased to 0.704 after using the Quantum Bit Error Rate equation, eventually
increasing the network performance. This results in the reduction of the overall amount of energy, and the time
required for performing the key exchange in the encryption and decryption processes decreased.
The accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
The background subtraction is a leading technique adopted for detecting the moving objects in video surveillance systems. Various background subtraction models have been applied to tackle different challenges in many surveillance environments. In this paper, we propose a model of pixel-based color-histogram and Fuzzy C-means (FCM) to obtain the background model using cosine similarity (CS) to measure the closeness between the current pixel and the background model and eventually determine the background and foreground pixel according to a tuned threshold. The performance of this model is benchmarked on CDnet2014 dynamic scenes dataset using statistical metrics. The results show a better performance against the state-of the art
... Show MoreThe cost of pile foundations is part of the super structure cost, and it became necessary to reduce this cost by studying the pile types then decision-making in the selection of the optimal pile type in terms of cost and time of production and quality .So The main objective of this study is to solve the time–cost–quality trade-off (TCQT) problem by finding an optimal pile type with the target of "minimizing" cost and time while "maximizing" quality. There are many types In the world of piles but in this paper, the researcher proposed five pile types, one of them is not a traditional, and developed a model for the problem and then employed particle swarm optimization (PSO) algorithm, as one of evolutionary algorithms with t
... Show MoreBackground Psoriasis is one of the most prevalent chronic inflammatory skin conditions; its prevalence ranges from 1 to 3%. Tumor necrosis factor-alpha (TNF-α), a cytokine that enhances inflammation, is overexpressed in synovium and skin plaques in psoriasis. TNF-α plays a critical role in the pathogenesis of psoriasis. IL-10 is the most crucial cytokine for reducing excessive immune responses and decreasing pro-inflammatory reactions in all autoimmune disorders. Objective To evaluate the effect of Apremilast on ILـ10, TNFـα, and BMI in obese psoriatic patients. Methods Thirty patients included in this investigative study to measure the concentrations of TNFـα, ILـ10 and BMI, before and after receiving Apremilast. TNFـα and
... Show MoreThe aim of the research to apply TD-ABC technology to determine the idle capacity of the central oil companies (oil field east of Baghdad), as a modern cost management technology based on time-oriented activities (TD-ABC) is used by industrial companies in general and oil companies on In particular to build a sustainable Calvinist pillar and make future decisions by identifying idle energy to gain it a competitive advantage, the descriptive analytical approach has been adopted in calculating and analyzing the company’s data for 2018, and the most prominent conclusions of this research are managing idle energy and the task of applying cost technology on the basis of time-oriented activities and providing Convenient spatial infor
... Show MoreCerebral palsy "is one of the diseases that afflict children, and it is a term given to the condition of a child who is exposed to a normal brain injury by accident due to its inability to grow or damage to the cells of the areas responsible for movement and knowledge of strength and balance during the stage of normal development." (116: 1999: 10) Cerebral palsy causes disruption in movement and posture due to damage to brain cells in areas that control and coordinate muscle tone, reflexes, strength, and movement. The degree and location of brain damage varies greatly between people with paralysis, as well as the severity of disability and symptoms, as they fall into severe to very simple, and cerebral palsy is one of the diseases that caus
... Show MoreThe current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. Fo