Ecological risk assessment of mercury contaminant has a means to analyze the ecological risk aspect of ecosystem using the potential impact of mercury pollution in soil, water and organism. The ecological risk assessment in a coastal area can be shown by mangrove zonation, clustering and interpolation of mercury accumulation. This research aims to analyze ecological risk assessment of potential mercury (including bioaccumulation and translocation) using indicators of species distribution, clustering, zonation and interpolation of mercury accumulation. The results showed that the Segara Anakan had a high risk of mercury pollution, using indicators like as the potential of mercury contaminant in water body was 0137±0.0137 ppm, substrate and sediment were 0.0134±0.0212 ppm. To reduce the impact of mercury pollution could be conducted by mangrove planting, following the ability of mercury accumulation in stem and bark between 0.011 and 0.064 ppm, in mangrove roots between 0.0260 and 0.0690 ppm and in mangrove leaves between 0.0020 and 0.0120 ppm,. The second indicator of mangrove ability to reduce the impact of mercury contaminant used the indicator of bioaccumulation factors, which had a range between 0.0210 and 0.4751, and the translocation factors were between 0.0459 and 1.0547. The results also showed that: Avicennia marina, Sonneratia alba, Rhizophora apiculate, Rhizophora mucronata and Nypa frutican had a good ability to accumulate and reduce the impact of mercury contamination.
Background
Respiratory tract aspergillosis is a pulmonary disease cause by aspergillus species which are opportunistic fungi that mainly infect immuno-compromised patients .
Objective(s)
The present study aimed to detect the frequency of pulmonary aspergillosis among clinically suspected and under follow up tuberculosis patients conducted at Tropical Diseases Teaching Hospital, Omdurman, Khartoum State , Sudan during the period from December 2019 to November 2020.
Materials and Methods
One hundred and fifty sputum samples were collected from suspected cases of pulmonary tuberculosis and under follow up tuberculosis patients. All specimens were examined using 20% KOH and cultured on two
... Show MoreThe study of biopolymers and their derivative materials had received a considerable degree of attention from researchers in the preparation of novel material. Biopolymers and their derivatives have a wide range of applications as a result of their bio-compatibility, bio-degradability and non-toxicity. In this paper, chitosan reacted with different aldehydes(2,4 –dichloro- benzaldehyde or 2-methyl benzaldehyde), different ketones (4-bromoacetophenone or 3-aminoacetophenone) to produce chitosan schiff base (1-4) . Chitosan schiff base (1-4) reacted with glutaric acid or adipic acid in acidic media in distilled water according to the steps of Fischer and Speier to produce compounds (5-12)
... Show MoreIn this research, the problem of multi- objective modal transport was formulated with mixed constraints to find the optimal solution. The foggy approach of the Multi-objective Transfer Model (MOTP) was applied. There are three objectives to reduce costs to the minimum cost of transportation, administrative cost and cost of the goods. The linear membership function, the Exponential membership function, and the Hyperbolic membership function. Where the proposed model was used in the General Company for the manufacture of grain to reduce the cost of transport to the minimum and to find the best plan to transfer the product according to the restrictions imposed on the model.
In this paper, the dynamic behaviour of the stage-structure prey-predator fractional-order derivative system is considered and discussed. In this model, the Crowley–Martin functional response describes the interaction between mature preys with a predator. e existence, uniqueness, non-negativity, and the boundedness of solutions are proved. All possible equilibrium points of this system are investigated. e sucient conditions of local stability of equilibrium points for the considered system are determined. Finally, numerical simulation results are carried out to conrm the theoretical results.
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show More