Preferred Language
Articles
/
bsj-7427
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection
...Show More Authors

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural Network (Text-CNN) and Long Short-Term Memory (LSTM) architecture to produce efficient hybrid model. Text-CNN is used to identify the relevant features, whereas the LSTM is applied to deal with the long-term dependency of sequence. The results showed that when trained individually, the proposed model outperformed both the Text-CNN and the LSTM. Accuracy was used as a measure of model quality, whereby the accuracy of the Hybrid Deep Neural Network is (0.914), while the accuracy of both Text-CNN and LSTM is (0.859) and (0.878), respectively. Moreover, the results of our proposed model are better compared to previous work that used the same dataset (AraNews dataset).

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet atta</p> ... Show More
View Publication
Scopus (21)
Crossref (12)
Scopus Crossref
Publication Date
Sun Mar 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Single Face Detection on Skin Color and Edge Detection
...Show More Authors

Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Direction Finding Using GHA Neural Networks
...Show More Authors

 This paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).

 

 

View Publication Preview PDF
Publication Date
Fri Jun 01 2018
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The effect of fraud detection skills in the settlement of Compensatory claims for the fire and accident insurance portfolio: An applied study in the national and Iraqi insurance companies
...Show More Authors

The research seeks to identify the impact of fraud detection skills in the settlement of compensatory claims for the fire and accident insurance portfolio and the reflection of these skills in preventing and reducing the payment of undue compensation to some who seek profit and enrichment at the expense of the insurance contract. And compensatory claims in the portfolio of fire and accident insurance in the two research companies, which show the effect and positive return of the detection skills and settlement of the compensation on the amount of actual compensation against the claims inflated by some of the insured, The research sample consisted of (70) respondents from a community size (85) individuals between the director and assistan

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 02 2021
Journal Name
Turkish Journal Of Computer And Mathematics Education
Deep understanding skills and their relationship to mathematical modelling among fifth grader
...Show More Authors

Abstract: The aim of the current research is to identify (the relationship between deep understanding skills and mathematical modeling among fifth grade students) the research sample consisted of (411) male and female students of the fifth grade of biology distributed over the General Directorates of Education in Baghdad / Al-Rusafa / 2 / and Al-Karkh / 1 /, and two research tools were built: 1- A test of deep understanding skills, consisting of (20) test items and a scale for two skills. 2- The second test consists of (24) test items distributed among (18) essay items and (6) objective items. The psychometric properties of validity, stability, discriminatory strength, and effectiveness of alternatives were verified for the two tests fo

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 06 2024
Journal Name
Journal Of Applied Engineering And Technological Science (jaets)
Deep Learning and Its Role in Diagnosing Heart Diseases Based on Electrocardiography (ECG)
...Show More Authors

Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Computer, Communication, Control And System Engineering
Recognition of Upper Limb Movements Based on Hybrid EEG and EMG Signals for Human-Robot Interaction
...Show More Authors

Upper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that usin

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Thu Nov 01 2018
Journal Name
International Journal Of Biomathematics
A non-conventional hybrid numerical approach with multi-dimensional random sampling for cocaine abuse in Spain
...Show More Authors

This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integ

... Show More
View Publication
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Jan 01 2026
Journal Name
Bioresource Technology
Hybrid Sono-Electro-Fenton (SEF) process driven by photovoltaic (PV) energy for sustainable hospital effluent treatment
...Show More Authors

View Publication
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Feb 05 2019
Journal Name
Journal Of The College Of Education For Women
Social Safety Nets and its role in the protection of widows (Problems and advancement options) A field study in the Social Welfare Department for Women
...Show More Authors

Current search problem manifested and widows who community harsh to bear hardships and pains، The goals of continuing the sustainability of life and take responsibility, and especially in light of the difficult circumstances in which Iraq is going through, and the displacement of murder and terrorism, which generated huge numbers of widows and orphans Because of the loss of a breadwinner and which became women and children are the most harm to the victim and as a result of wars and armed tendencies So this research is an important and vital topic opens our horizons important for overlapping roles of women widows and their impact on the achievement and status of Iraqi women and that as long as aptly characterized and their ability to end

... Show More
View Publication Preview PDF