Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural Network (Text-CNN) and Long Short-Term Memory (LSTM) architecture to produce efficient hybrid model. Text-CNN is used to identify the relevant features, whereas the LSTM is applied to deal with the long-term dependency of sequence. The results showed that when trained individually, the proposed model outperformed both the Text-CNN and the LSTM. Accuracy was used as a measure of model quality, whereby the accuracy of the Hybrid Deep Neural Network is (0.914), while the accuracy of both Text-CNN and LSTM is (0.859) and (0.878), respectively. Moreover, the results of our proposed model are better compared to previous work that used the same dataset (AraNews dataset).
ArcHydro is a model developed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. Raster-based digital elevation models (DEMs) play an important role in distributed hydrologic modeling supported by geographic information systems (GIS). Digital Elevation Model (DEM) data have been used to derive hydrological features, which serve as inputs to various models. Currently, elevation data are available from several major sources and at different spatial resolutions. Detailed delineation of drainage networks is the first step for many natural resource management studies. Compared with interpretation from aerial photographs or topographic maps, auto
... Show MorePower switches require snubbing networks for driving single – phase industrial heaters. Designing these networks, for controlling the maximum allowable rate of rise of anode current (di/dt) and excessive anode – cathode voltage rise (dv/dt) of power switching devices as thyristors and Triacs, is usually achieved using conventional methods like Time Constant Method (TCM), resonance Method (RM), and Runge-Kutta Method (RKM). In this paper an alternative design methodology using Fuzzy Logic Method (FLM) is proposed for designing the snubber network to control the voltage and current changes. Results of FLM, with fewer rules requirements, show the close similarity with those of conventional design methods in such a network of a Triac drivin
... Show MoreThe Electrical power system has become vast and more complex, so it is subjected to sudden changes in load levels. Stability is an important concept which determines the stable operation of the power system. Transient stability analysis has become one of the significant studies in the power system to ensure the system stability to withstand a considerable disturbance. The effect of temporary occurrence can lead to malfunction of electronic control equipment. The application of flexible AC transmission systems (FACTS) devices in the transmission system have introduced several changes in the power system. These changes have a significant impact on the power system protection, due to differences inline impedance, line curre
... Show MoreMetaphor is one of the most important linguistic phenomena of the artistic text, as it is the expression of the author’s emotions and evaluations, the result of a deep inner transformation of the semantic words and visual means of reflecting the national culture of each people. This paper examines the concept of linguistic metaphors and analyzes its types in the Russian and Arabic linguistics, provides a comparative analysis of metaphors in Russian and Arabic — all this allows to conclude that metaphorization is characteris- tic of different parts of speech. In the Russian language stylistic differentiation of the metaphors expressed more than in Arabic, so translation of many “sty- listic” metaphors from Russian into Arabic due to
... Show MoreIn October 2019, Iraq and Lebanon witnessed widespread protests, which aroused the interest of the media, as they began with demands for the provision of services, then escalated with the overthrow of the political system. The researchers chose a satellite channel that represents a direction for a country accused of entering the line of protests. This paper aims to analyze the main bulletin of Al-Alam channel to find out how it deals with the protests in the news. It is classified descriptively, using the survey method and the method of content analysis. The study community was represented by the main news bulletin of Al-Alam channel. The researchers adopted a deliberate sample for the period from 1/10/2019 to
... Show MoreA frequently used approach for denoising is the shrinkage of coefficients of the noisy signal representation in a transform domain. This paper proposes an algorithm based on hybrid transform (stationary wavelet transform proceeding by slantlet transform); The slantlet transform is applied to the approximation subband of the stationary wavelet transform. BlockShrink thresholding technique is applied to the hybrid transform coefficients. This technique can decide the optimal block size and thresholding for every wavelet subband by risk estimate (SURE). The proposed algorithm was executed by using MATLAB R2010aminimizing Stein’s unbiased with natural images contaminated by white Gaussian noise. Numerical results show that our algorithm co
... Show MoreCensure in poetry is a pattern of poetic construction, in which the poet evokes a voice other than his own voice or creates out of his own self another self and engages with him in dialogue in the traditional artistic style whose origin remains unknown. Example of the same may be found in the classical Arabic poets’ stopping over the ruins, crying over separation and departure and speaking with stones and andirons; all in the traditional technical mould. Censure confronting the poet usually emanates from the women as blaming, censure and cursing is closer to woman’s hearts than to the man’ hearts. Censure revolves around some social issues, such as the habit of over drinking wine and extravagant generosity taking risks, traveling,
... Show MoreThis article is devoted to the cognitive study of ironic metonymy in Russian and Arabic. Metonymy and irony have traditionally been seen as parallel linguistic phenomena. But their formation and interpretation are based on different cognitive mechanisms. At the formal and functional level, metonymy and irony have a number of significant differences. Metonymy is an artistic technique, the mechanism of which is based on obvious, easily traced connections between objects and phenomena of the surrounding world. Irony is a satirical technique or a rhetorical figure that is used to create a certain artistic image, aimed at forming the hidden meaning of the statement. A native speaker intuitively feels the difference between metonymy and i
... Show MoreSpelling correction is considered a challenging task for resource-scarce languages. The Arabic language is one of these resource-scarce languages, which suffers from the absence of a large spelling correction dataset, thus datasets injected with artificial errors are used to overcome this problem. In this paper, we trained the Text-to-Text Transfer Transformer (T5) model using artificial errors to correct Arabic soft spelling mistakes. Our T5 model can correct 97.8% of the artificial errors that were injected into the test set. Additionally, our T5 model achieves a character error rate (CER) of 0.77% on a set that contains real soft spelling mistakes. We achieved these results using a 4-layer T5 model trained with a 90% error inject
... Show More