Preferred Language
Articles
/
bsj-7427
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection
...Show More Authors

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural Network (Text-CNN) and Long Short-Term Memory (LSTM) architecture to produce efficient hybrid model. Text-CNN is used to identify the relevant features, whereas the LSTM is applied to deal with the long-term dependency of sequence. The results showed that when trained individually, the proposed model outperformed both the Text-CNN and the LSTM. Accuracy was used as a measure of model quality, whereby the accuracy of the Hybrid Deep Neural Network is (0.914), while the accuracy of both Text-CNN and LSTM is (0.859) and (0.878), respectively. Moreover, the results of our proposed model are better compared to previous work that used the same dataset (AraNews dataset).

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri May 15 2020
Journal Name
Pharmacy Practice
Barriers to healthcare access for Arabic-speaking population in an English-speaking country
...Show More Authors

Objective: To identify barriers to healthcare access, to assess the health literacy levels of the foreign-born Arabic speaking population in Iowa, USA and to measure their prevalence of seeking preventive healthcare services. Methods: A cross-sectional study of native Arabic speaking adults involved a focus group and an anonymous paper-based survey. The focus group and the Andersen Model were used to develop the survey questionnaire. The survey participants were customers at Arabic grocery stores, worshippers at the city mosque and patients at free University Clinic. Chi-square test was used to measure the relationship between the characteristics of survey participants and preventive healthcare services. Thematic analysis was

... Show More
View Publication
Scopus (13)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
كتاب المؤتمر العلمي الانساني الثاني لكلية الحكمة الجامعة
اهمية شبكة المعلومات الدولية لتدريسيي مادة اللغة العربية في جامعة بغداد
...Show More Authors

Preview PDF
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of The College Of Languages (jcl)
Plain Language Movement and Legal Translation : An Analytical Study of Two Translations of a Contract of Lease from Arabic into English
...Show More Authors

The present paper addresses one of the most challenging topics in translation; namely legal translation in the framework of two different approaches; the classical (formal) and the more recent (functional). The latter approach is the outcome of the process of simplifying legal language known technically as Plain Language Movement. The advent of this movement dates back to the 1950s, in response to the widely-held complain about the awkwardness of the legal register. Within this framework, the salient features of legal language, at the various linguistic and textual levels, underwent reconsideration in favor of more publicly digested expressions. The paper then subjects two translations of a lease contract to analysis in the ligh

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of The College Of Languages (jcl)
LA CONDICIONALIDAD EN ÁRABE Estudio lingüístico y traductológico CONDITION IN ARABIC: Linguistic study and translation
...Show More Authors

La condicionalidad en árabe, supongo como en otras lenguas, constituye una noción amplia que puede expresarse mediante diferentes construcciones sintácticas. La mayor parte de los especialistas coinciden en señalar que las estructuras condicionales son, probablemente, la clase más compleja de expresión compuesta en árabe. Se utilizan para expresar una condición de la que depende la realización de lo expuesto en la oración principal. Las estructuras condicionales son una de las principales vías lingüísticas de las que dispone el individuo para expresar su capacidad de imaginar situaciones diferentes a las reales; de crear mundos posibles; de soñar con situaciones pasadas que podrían haber sido diferentes; de ocultar lo fact

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 20 2024
Journal Name
Fizjoterapia Polska
Development Artificial Neural Network (ANN) computing model to analyses men's 100¬meter sprint performance trends
...Show More Authors

Coaches and analysts face a significant challenge of inaccurate estimation when analyzing Men's 100 Meter Sprint Performance, particularly when there is limited data available. This necessitates the use of modern technologies to address the problem of inaccurate estimation. Unfortunately, current methods used to estimate Men's 100 Meter Sprint Performance indexes in Iraq are ineffective, highlighting the need to adopt new and advanced technologies that are fast, accurate, and flexible. Therefore, the objective of this study was to utilize an advanced method known as artificial neural networks to estimate four key indexes: Accelerate First of 10 meters, Speed Rate, Time First of 10 meters, and Reaction Time. The application of artifi

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Dec 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Design of an Adaptive PID Neural Controller for Continuous Stirred Tank Reactor based on Particle Swarm Optimization
...Show More Authors

 A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.

View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Mar 08 2015
Journal Name
All Days
Distribution of New Horizontal Wells by the Use of Artificial Neural Network Algorithm
...Show More Authors
Abstract<p>It is an established fact that substantial amounts of oil usually remain in a reservoir after primary and secondary processes. Therefore; there is an ongoing effort to sweep that remaining oil. Field optimization includes many techniques. Horizontal wells are one of the most motivating factors for field optimization. The selection of new horizontal wells must be accompanied with the right selection of the well locations. However, modeling horizontal well locations by a trial and error method is a time consuming method. Therefore; a method of Artificial Neural Network (ANN) has been employed which helps to predict the optimum performance via proposed new wells locations by incorporatin</p> ... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Thu Jun 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Performance Improvement of Neural Network Based RLS Channel Estimators in MIMO-OFDM Systems
...Show More Authors

The objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a

... Show More
View Publication Preview PDF
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Spatial Prediction of Monthly Precipitation in Sulaimani Governorate using Artificial Neural Network Models
...Show More Authors

ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data

... Show More
View Publication Preview PDF
Crossref