Wind energy is one of the most common and natural resources that play a huge role in energy sector, and due to the increasing demand to improve the efficiency of wind turbines and the development of the energy field, improvements have been made to design a suitable wind turbine and obtain the most energy efficiency possible from wind. In this paper, a horizontal wind turbine blade operating under low wind speed was designed using the (BEM) theory, where the design of the turbine rotor blade is a difficult task due to the calculations involved in the design process. To understand the behavior of the turbine blade, the QBlade program was used to design and simulate the turbine rotor blade during working conditions. The design variables such as (chord length and torsion angle) affecting the performance of wind turbines were studied. Aileron (NACA4711) was selected for sixteen different sections of the blade with a length of (155 cm) both (power factor, torque coefficient, lift coefficient, drag coefficient, lift-to-drag coefficient ratio) where high-accuracy results were obtained and it was found that the best performance in which the turbine rotor can operate is when the(tip speed ratio) is equal to (7). In addition, a power factor was obtained (Cp = 0.4742), not exceeding the Betz limit (0.59%). It is good efficiency for a small wind turbine, and it turns out that the design of a small horizontal wind turbine with three blades is suitable for working in areas with low wind speed.
Energy use is second to staffing in building operating costs. Sustainable technology in the energy sector is based on utilizing renewable sources of energy such as solar, wind, glazing systems, insulation. Other areas of focus include heating, ventilation and air conditioning; novel materials and construction methods; improved sensors and monitoring systems; and advanced simulation tools that can help building designers make more energy efficient choices. The objective of this research is studying the effect of insulations on energy consumption of buildings in Iraq and identifying the amount of energy savings from application th
... Show MoreThe aim of this study is to look at the potential of a local sustainable energy network in a pre-existing context to develop a novel design beneficial to the environment. Nowadays, the concept of smart cities is still in the developmental phase/stage andwe are currently residing in a transitional period, therefore it is very important to discover new solutions that show direct benefits the people may get from transforming their city from a traditional to a smart city. Using experience and knowledge of successful projects in various European and non-European smart cities, this study attempts to demonstrate the practical potential of gradually moving existing cities to t
... Show MoreOnline examination is an integral and vital component of online learning. Student authentication is going to be widely seen when one of these major challenges within the online assessment. This study aims to investigate potential threats to student authentication in the online examinations. Adopting cheating in E-learning in a university of Iraq brings essential security issues for e-exam . In this document, these analysts suggested a model making use of a quantitative research style to confirm the suggested aspects and create this relationship between these. The major elements that might impact universities to adopt cheating electronics were declared as Educational methods, Organizational methods, Teaching methods, Technical meth
... Show MoreIn the last few years, fiber-coupled diode lasers have shown massive applications in many fields of communication and scientific research. Particularly, the pumping of solid-state lasers is a key application for more powerful diode lasers enabling good solutions in various laser micro methods like metal cutting, sintering, structuring as well as drilling. In this work, a simple beam shaping method is demonstrated for coupling a high-power semiconductor laser diode into multi-mode fiber optic using optical lenses. The optical lenses as beam transformation components are utilized to reshape the asymmetrical irradiation of the diode laser bar and to circularize the laser beam. Using this simple method, compact, high-output-power, and high-b
... Show MoreThis paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreAutonomous motion planning is important area of robotics research. This type of planning relieves human operator from tedious job of motion planning. This reduces the possibility of human error and increase efficiency of whole process.
This research presents a new algorithm to plan path for autonomous mobile robot based on image processing techniques by using wireless camera that provides the desired image for the unknown environment . The proposed algorithm is applied on this image to obtain a optimal path for the robot. It is based on the observation and analysis of the obstacles that lying in the straight path between the start and the goal point by detecting these obstacles, analyzing and studying their shapes, positions and
... Show MoreCopper electrodeposition by electrorefining process in acidic sulfate media contains 40 g/l of cupric ions and 160 g/l of sulfuric acid was achieved to study the influence of the operating parameters on cathode purity, surface morphology, deposition rate, current efficiency and power consumption. These operating parameters and there ranges are: current density 200, 300 and 400 A/m2, electrolyte temperature 35, 50 and 65 oC, electrodes spacing 15, 30 and 45 mm and electrolyte residence time 6, 4 and 2 h were utilized. XRF, SEM and EDX analyses were attained to clarify the properties of the produced cathode.
In this research, electron coefficients such as total collision frequency (colt/N), total ionization frequency (viz/N), and Power (P/N) for different gases such as (Ar, He, N2 and O2 (in Earth’s ionosphere have been calculated by applying the Boltzmann equation utilizing BOLSIG +, and it has been discovered that there is a significant impact of reducing the electric field (E/N) on electronic coefficients under which (E/N) increases. In addition, influence of (E/N) on electronic coefficients was studied. Reducing the electric field was chosen in the restricted range (1-100) Td, and the electronic coefficients for gases in the limited range (50-2000) km of the Earth's ionosphere. A positive correlation has been explained between all the
... Show MoreThe present paper analyzes the signal emitting from the Reticle during changing the spot size of laser falling on the disk and shows the optimum frequency and the amount of energy window in different patterns of modulator (Reticle). All results are obtained by establishing a special program named “Disk optical modulator version 3" using the language visual basic 6 ahich contains many parameters. All models of optical modulator consist of twenty sectors, ten sectors are opaque and other ten sectors are transmitted for the laser. The number of sectors depends on several factors as chopping frequency, power transparent and modulation transfer function. It has been demonstrated by simulations, the optimal
... Show MoreThis paper studies the effect of the solar indices (total sunspot no., solar wind density and coronal mass ejection linear speed) on F2- layer electron density, as well as, the comparison of seasonal variations of electron density of F2- layer, NmF2, for Mars at local noontime and for maximum and minimum solar cycles.
Results show that there is an inverse correlation between sunspot number, solar wind density, CME linear speed and ionosphere electron density for Mars, at maximum and minimum solar cycles. This correlation is clear when electron density is at minimum value.
... Show More