In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial lung CT-scans into two groups (COVID-19 and NonCOVID-19) had been proposed. A dataset used is 960 slices of CT scan collected from Iraqi patients /Ibn Al-Nafis teaching hospital. The performance metrics are used in this study (accuracy, recall, precision, and F1 scores). The results indicate that the proposed approach generated a high-quality model for the collected dataset, with an overall accuracy of 98.95% and an overall recall of 97 %.
The letter is defined as a message directed by the sender to another party, the future. The aim is to convey, clarify or explain a particular point or subject, and in the form of direct oral communication through speech that contains a set of words and words, The future can discuss the sender directly to exchange ideas with each other, or it may be written and in this case does not require direct interaction between the matchmaker and the recipient. As a result of the different sources and topics of the discourse, and the different types of categories addressed to the speech, and the number, it has been divided into several types.
And schools of discourse analysis emerged in the early eighties of the last century and has spread and ha
Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show MoreResearch in consumer science has proven that grocery shopping is a complex and distressing process. Further, the task of generating the grocery lists for the grocery shopping is always undervalued as the effort and time took to create and manage the grocery lists are unseen and unrecognized. Even though grocery lists represent consumers’ purchase intention, research pertaining the grocery lists does not get much attention from researchers; therefore, limited studies about the topic are found in the literature. Hence, this study aims at bridging the gap by designing and developing a mobile app (application) for creating and managing grocery lists using modern smartphones. Smartphones are pervasive and become a necessity for everyone tod
... Show MoreDust and bird residue are problems impeding the operation of solar street lighting systems, especially in semi-desert areas, such as Iraq. The system in this paper was designed and developed locally using simple and inexpensive materials. The system runs automatically. It Connects to solar panels used in solar street lighting, and gets the required electricity from the same solar system. Solar panels are washed with dripping water in less than half a minute by this system. The cleaning period can also be controlled. It can also control, sensing the amount of dust the system operates. The impact of different types of falling dust on panels has also been studied. This was collected from different winds and studied their impact o
... Show MoreParasitic diseases can affect infection with COVID-19 obviously, as protective agents, or by reducing severity of this viral infection. This current review mentions the common symptoms between human parasites and symptoms of COVID-19, and explains the mechanism actions of parasites, which may prevent or reduce severity of this viral infection. Pre-existing parasitic infections provide prohibition against pathogenicity of COVID-19, by altering the balance of gut microbiota that can vary the immune response to this virus infection.
ت نايبتسلاا ثحابلا مدختسا دقو ,ةيداصتقلاا تادحولا ةميق ىلع انوروك ةحئاج لظ يف يلخادلا قيقدتلا ريثأت ةيداصتقلاا تادحولا فادها قيقحت يف مهسي يلخادلا قيقدتلا نا ثحبلا تاجاتنتسا مها تناكو , ثحبلا تاريغتم نيب ةقلاعلا نايبل رطاخملا ةرادأو اهتءافكو اهتيلعاف نيسحتو قيقدتلا عقوم زيزعت ىلع لمعلا تايصوتلا مها تناكو امك, ةمكوحلا تايلمعو ةباقرلاو قيقحتل رارمتسأب ئراوطلا ططخ ثيدحتو ةبقارمو ةحضاو تازفحم ءاشناو ةلمتحم
... Show MoreAbstract
The objective of image fusion is to merge multiple sources of images together in such a way that the final representation contains higher amount of useful information than any input one.. In this paper, a weighted average fusion method is proposed. It depends on using weights that are extracted from source images using counterlet transform. The extraction method is done by making the approximated transformed coefficients equal to zero, then taking the inverse counterlet transform to get the details of the images to be fused. The performance of the proposed algorithm has been verified on several grey scale and color test images, and compared with some present methods.
... Show More