A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
The study aimed to explore the effectiveness of using rational judgment strategy in teaching science to develop scientific thinking for second-grade students. The researcher utilized the quasi-experimental approach based on (the pre/post designing) of two groups: experimental and control. As for tools: a test of scientific thinking prepared by the researcher that proved its verification of their validity and reliability. The test applied on a random sample of (66) students, divided into two groups: (34) experimental, and (32) control. The results showed that the experimental group outperformed the control group in the post-application of the scientific thinking test, In each skill separately, and in the total skills. The study recommende
... Show MoreResearchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the l
... Show MoreIn this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
Density Functional Theory (DFT) method of the type (B3LYP) and a Gaussian basis set (6-311G) were applied for calculating the vibration frequencies and absorption intensities for normal coordinates (3N-6) at the equilibrium geometry of the Di and Tetra-rings layer (6, 0) zigzag single wall carbon nanotubes (SWCNTs) by using Gaussian-09 program. Both were found to have the same symmetry of D6d point group with C--C bond alternation in all tube rings (for axial bonds, which are the vertical C--Ca bonds in rings layer and for circumferential bonds C—Cc in the outer and mid rings bonds). Assignments of the modes of vibration IR active and inactive vibration frequ
... Show Moreبهذا البحث نقارن معاييرالمعلومات التقليدية (AIC , SIC, HQ , FPE ) مع معيارمعلومات الانحراف المحور (MDIC) المستعملة لتحديد رتبة انموذج الانحدارالذاتي (AR) للعملية التي تولد البيانات,باستعمال المحاكاة وذلك بتوليد بيانات من عدة نماذج للأنحدارالذاتي,عندما خضوع حد الخطأ للتوزيع الطبيعي بقيم مختلفة لمعلماته
... Show MoreAbstract
The Non - Homogeneous Poisson process is considered as one of the statistical subjects which had an importance in other sciences and a large application in different areas as waiting raws and rectifiable systems method , computer and communication systems and the theory of reliability and many other, also it used in modeling the phenomenon that occurred by unfixed way over time (all events that changed by time).
This research deals with some of the basic concepts that are related to the Non - Homogeneous Poisson process , This research carried out two models of the Non - Homogeneous Poisson process which are the power law model , and Musa –okumto , to estimate th
... Show MoreThe lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb