A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
In this study, concentrations of radon were measured for seventeen samples of soil distributed in three Sulphuric Spring, in addition to other regions as a background in Hit City in AL-Anbar Governorate. The radon concentrations in soil samples measured by using alpha-emitters registration that emits from radon (222Rn) in (CR-39) track detector. The concentrations values were calculated by a comparison with standard samples. The results show that the radon concentrations in first spring varies from (258.253- 347.762 Bq/m3), second spring (230.374-305.209 Bq/m3), third spring (292.002-336.023 Bq/m3) and the average radon concentration in other regions (187.821 Bq/m3). As a conclusion of the study radon concentration in Sulphuric Spring is r
... Show MoreCalcium-Montmorillonite (bentonite) [Ca-MMT] has been prepared via cation exchange reaction using benzalkonium chloride [quaternary ammonium] as a surfactant to produce organoclay which is used to prepare polymer composites. Functionalization of this filler surface is very important factor for achieving good interaction between filler and polymer matrix. Basal spacing and functional groups identification of this organoclay were characterized using X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy respectively. The (XRD) results showed that the basal spacing of the treated clay (organoclay) with the benzalkonium chloride increased to 15.17213 0A, this represents an increment of about 77.9% in the
... Show MoreThe accurate extracting, studying, and analyzing of drainage basin morphometric aspects is important for the accurate determination of environmental factors that formed them, such as climate, tectonic activity, region lithology, and land covering vegetation.
This work was divided into three stages; the 1st stage was delineation of the Al-Abiadh basin borders using a new approach that depends on three-dimensional modeling of the studied region and a drainage network pattern extraction using (Shuttle Radar Topographic Mission) data, the 2nd was the classification of the Al-Abiadh basin streams according to their shape and widenings, and the 3rd was ex
... Show MoreThe study was aimed to evaluate the marketing efficiency of dry Onion crop in Salah al-Deen, as estimate the impact of some quality and quantity factors in the efficiency of marketing process of crop using Tobit regression model. The average marketing efficiency of the research sample was 71.3686%. The marketing margins differed according to the marketing channel followed in marketing the crop. The qualitative and quantitative variables in the model are productivity, family size, distance from the market, educational level. The estimated model revealed that a variable productivity is the most important and influential in marketing efficiency, followed by the variable of the distance between the farm and the market, then the variable
... Show MoreIn this study, the aqueous extract of (Typha domingensis Pers.) pollen grain (qurraid) to know its ability to manufacture silver nanoparticles. Qurraid is a semi-solid yellow food substance, sold in Basra markets and eaten by the local population. It is made from the pollen of the T. domingensis Pers. plant after being pressed and treated with water vapor. The Gas chromatography–mass spectrometry (GC-MS) reaction was done to identify the active compounds of qurraid aqueous extract. The ability of the aqueous extract of qurraid to manufacture silver nanoparticles was tested, and the construction of silver nanoparticles was inferred by the reaction mixture's color, which ranged from yellow to dark brown. The synthesi
... Show MoreThe performance of a vapor compression refrigeration system (VCRS)-based residential air conditioner operating in a high-ambient temperature (HAT) country was investigated using six zero-ODP (ozone depletion potential) refrigerants as replacements to R22. The non-flammable alternative refrigerants considered in the present research were R134a, R404A, R407C, R410A, R448A, and R507A. Using the basic conservation laws, the VCRS was modeled during steady-state operation and solved using engineering equation solver (EES) software. Coefficient of performance (COP), pressures and temperatures at compressor suction and discharge, Global Warming Potential (GWP), critical pressure and temperature, compressor
The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show MoreIn recent years, various methods have been developed to enhance the characteristics of asphalt pavement in order to face the continuous challenges of increasing traffic loads and changing climate conditions. One of the most popular and successful methods is modifying the asphalt mixtures or asphalt binder with the addition of polymers. Therefore, two types of Polyethylene (PE) polymer, High-Density PE (HDPE) and Low-Density PE (LDPE), are used in this research. Two methods were applied to prepare PE-modified asphalt mixtures: Semi-Wet Method (S-WM) and Dry Method (DM). The findings of the investigation indicated that the addition of PE polymer can reduce the wear loss of aggregate. In general, the experimental results revealed that asphalt
... Show More