A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
This research presents a numerical study to simulate the heat transfer by forced convection as a result of fluid flow inside channel’s with one-sided semicircular sections and fully filled with porous media. The study assumes that the fluid were Laminar , Steady , Incompressible and inlet Temperature was less than Isotherm temperature of a Semicircular sections .Finite difference techniques were used to present the governing equations (Momentum, Energy and Continuity). Elliptical Grid is Generated using Poisson’s equations . The Algebraic equations were solved numerically by using (LSOR (.This research studied the effect of changing the channel shapes on fluid flow and heat transfer in two cases ,the first: cha
... Show MoreGlobally, the COVID-19 pandemic’s development has presented significant societal and economic challenges. The carriers of COVID-19 transmission have also been identified as asymptomatic infected people. Yet, most epidemic models do not consider their impact when accounting for the disease’s indirect transmission. This study suggested and investigated a mathematical model replicating the spread of coronavirus disease among asymptomatic infected people. A study was conducted on every aspect of the system’s solution. The equilibrium points and the basic reproduction number were computed. The endemic equilibrium point and the disease-free equilibrium point had both undergone local stability analyses. A geometric technique was used
... Show MoreRation power plants, to generate power, have become common worldwide. One such one is the steam power plant. In such plants, various moving parts of heavy machines generate a lot of noise. Operators are subjected to high levels of noise. High noise level exposure leads to psychological as well physiological problems; different kinds of ill effects. It results in deteriorated work efficiency, although the exact nature of work performance is still unknown. To predict work efficiency deterioration, neuro-fuzzy tools are being used in research. It has been established that a neuro-fuzzy computing system helps in identification and analysis of fuzzy models. The last decade has seen substantial growth in development of various neuro-fuzzy systems
... Show MoreE-learning is a necessity imposed by the Corona pandemic, which has disrupted various educational institutions in the world, but some of these institutions have not been affected and education has continued with them, due to their flexible educational system that was able to employ technology in the continuity of the educational process in the so-called e-learning, because It has characteristics that make it the most suitable alternative to avoid the consequences of the Corona pandemic and its damage to the educational process, as e-learning is one of the modern methods that contribute to enhancing the effectiveness of the learner, and enabling him to assume greater responsibility compared to traditional education, so the learner becomes
... Show MoreAbstract
This study aims to identify the repercussions of the Corona pandemic (Covid 19) and its impact on the educational and psychological functions of the Omani family from the point of view of a number of fathers and mothers. Drive for a group of fathers and mothers, some of whom work in the government sector and others are mothers enrolled in graduate studies programs at the university, their ages range between (30-50 years) totally (28) mothers and fathers: 22 mothers and 6 fathers. The results showed that the repercussions of the transformation of e-learning, home quarantine, social distancing, and the challenges associated with them were among the most frequent responses that posed a real challenge to the
... Show MoreThe aim of this work is to evaluate some mechanical and physical
properties (i.e. the impact strength, hardness, flexural strength,
thermal conductivity and diffusion coefficient) of
(epoxy/polyurethane) blend reinforced with nano silica powder (2%
wt.). Hand lay-up technique was used to manufacture the composite
and a magnetic stirrer for blending the components. Results showed
that water had affected the bending flexural strength and hardness,
while impact strength increased and thermal conductivity decreased.
In addition to the above mentioned tests, the diffusion coefficient
was calculated using Fick’s 2nd law.
Let M is a Г-ring. In this paper the concept of orthogonal symmetric higher bi-derivations on semiprime Г-ring is presented and studied and the relations of two symmetric higher bi-derivations on Г-ring are introduced.
The first chapter the importance of research and need for education scientists see that the roots of the use of a specimen Wheatley in learning and teaching back to Grayson Wheatley, one of the largest supporters of a modern construction, which lay the groundwork for the specimen stage and the form in which it is. That was attributed to him, often called his name called while some educators based learning strategy on the issue. He sees the learner in this model make him a meaningful understanding of problems during his progress, thereby acting with his colleagues to find solutions to them in small groups. He
Borders Search: Search by students is determined by th
... Show MoreThe current study aimed to identify the difficulties faced by the student in mathematics and possible proposals to address these difficulties. The study used a descriptive method also used the questionnaire to collect data and information were applied to a sample of (163) male and female teachers. The results of the study found that the degree of difficulties in learning mathematics for the fifth and sixth grades is high for some paragraphs and intermediate for other paragraphs, included the student's field. The results also revealed that there were no statistically significant differences at the level of significance (α = 0.05) between the responses of the members of the study sample from male and female teachers to the degree of diffi
... Show MoreThis paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show More