A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
Background: Dialysis is in common use to treat patients
with end stage renal failure .However longstanding dialysis
harboring some cellular changes in various body fluids.
This study was conducted in order to detect these changes
in urine.
Objective: The study was conducted to detect cellular
changes in urine of patients with longstanding dialysis.
Method: Fifty-three urine samples were examined
cytologically obtained from patients with longstanding
dialysis during 6 months period. Freshly voided midstream
urine samples were taken . Samples were centrifuged and 2
to 3 drops of sediments were smeared on 2 glass slides and
fixed in 95% ethyl alcohol then stained with Hand E stain
to be evaluated.
R
This paper is concerned with the oscillation of all solutions of the n-th order delay differential equation . The necessary and sufficient conditions for oscillatory solutions are obtained and other conditions for nonoscillatory solution to converge to zero are established.
Background: Fibromyalgia syndrome (FMS) is the
most common rheumatic cause of diffuse pain and
multiple regional musculoskeletal pain and disability.
Objective: is to assess the contribution of serum
lipoprotein (A) in the pathogenesis of FMS patients.
Methods: One hundred twenty two FMS patients
were compared with 60 healthy control individuals
who were age and sex matched. All FMS features and
criteria are applied for patients and controls; patients
with secondary FMS were excluded. Serum
Lipoprotein (A): [Lp(A)], body mass index (BMI), &
s.lipid profile were determined for both groups.
Results: There was a statistical significant difference
between patients &controls in serum lipoprotein
The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreThe impact of a simple trailing-edge plain flap on the aerodynamics of the SD7037 airfoil have been studied in this paper using computational fluid dynamics at Reynolds number of 3×105 across various low angles of attack and flap deflection angles. The computational model was evaluated by using Star CCM+ software with κ--ω SST turbulence and gamma transition model to solve Navier-Stokes equations. The accuracy of the computational model has been confirmed through comparison with experimental data, showing a high level of agreement at low angles of attack. The findings revealed that specific combinations of angles of attack and flap deflection angles could increase the lift-to-drag ratio by over 70% compared to baseline conditions, benefi
... Show More
