A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
Fingerprints are commonly utilized as a key technique and for personal recognition and in identification systems for personal security affairs. The most widely used fingerprint systems utilizing the distribution of minutiae points for fingerprint matching and representation. These techniques become unsuccessful when partial fingerprint images are capture, or the finger ridges suffer from lot of cuts or injuries or skin sickness. This paper suggests a fingerprint recognition technique which utilizes the local features for fingerprint representation and matching. The adopted local features have determined using Haar wavelet subbands. The system was tested experimentally using FVC2004 databases, which consists of four datasets, each set holds
... Show MoreThe current research aims to identify the extent to which cognitive economics skills are included in the content of the chemistry textbook for the third intermediate grade, and the research sample was represented in the chemistry textbook for the third intermediate grade. A list of knowledge economy skills was prepared (6) main skills (basic skills, communication skills, thinking skills, work skills Group, information-gathering skill, behavioral skills (and (20) sub-skills) (reading, writing, operations, computer skills and employability, oral expression and written communication, dialogue, persuasion, influence and arousal, analysis, problem-solving, decision-making, suggestions and hypotheses and employing them. Controlling, directing
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreWith the recent developments of technology and the advances in artificial intelligent and machine learning techniques, it becomes possible for the robot to acquire and show the emotions as a part of Human-Robot Interaction (HRI). An emotional robot can recognize the emotional states of humans so that it will be able to interact more naturally with its human counterpart in different environments. In this article, a survey on emotion recognition for HRI systems has been presented. The survey aims to achieve two objectives. Firstly, it aims to discuss the main challenges that face researchers when building emotional HRI systems. Secondly, it seeks to identify sensing channels that can be used to detect emotions and provides a literature review
... Show MoreIn this study, three strengthening techniques, near-surface mounted NSM-CRFP, NSM-CFRP with externally bonding EB-CFRP, and hybrid CFRP with circularization were studied to increase the seismic performance of existing RC slender columns under lateral loads. Experimentally, 1:3 scale RC models were studied and subjected to both lateral static load and seismic excitation. In the dynamic test, a model was subjected to El Centro 1940 NS earthquake excitation by using a shaking table. According to the test results, the strengthening techniques showed a significant increase in load carrying capacity, of about 86.6%, and 46.6%, for circularization and NSM-CFRP respectively, of the reference unstrengthened columns. On the other hand, column
... Show MoreThe aim of this research is to measure the effect of Adey- Shire model in the achievement and critical thinking of first intermediate female students in mathematics. The researcher adopted the experimental method with a post-test, the research of sample consists of (60) female students, divided into two groups with (30) students in the experimental group, that studied with Adey- Shire model, and (30) students in the control group who studied in the usual way. The two groups are equivalent in many variables. The researcher makes two tests of multiple choices, the first one is an achievement test consists (30) items and another test was for a critical thinking test with (25) items. The statistical analysis make to both tests is made with s
... Show MoreIn recent years, the positioning applications of Internet-of-Things (IoT) based systems have grown increasingly popular, and are found to be useful in tracking the daily activities of children, the elderly and vehicle tracking. It can be argued that the data obtained from GPS based systems may contain error, hence taking these factors into account, the proposed method for this study is based on the application of IoT-based positioning and the replacement of using IoT instead of GPS. This cannot, however, be a reason for not using the GPS, and in order to enhance the reliability, a parallel combination of the modern system and traditional methods simultaneously can be applied. Although GPS signals can only be accessed in open spaces, GP
... Show MoreThe current research aims to adopt production quality decisions as the most important decisions , because they are accompanied by customer satisfaction through monitoring the quality of drinking water in iraq which reach through the pipeline network associated with water treatment projects of Tigris and Euphrates rivers. One of the indicators of quality control was the drawing of the C-chart by specifying the central line and the upper and lower limit of the control and the diagnosis of whether the production system as a whole within the scope of quality control or not and determine the strength and significance of the correlation between the quantities of water And actual needs for customers , the research has reached a number o
... Show MoreThe possibility of using activated carbon developed from date palm seeds wastes as a permeable reactive barrier (PRB) to remove copper from polluted shallow groundwater was investigated. The activated carbon has been developed from date palm seeds by dehydrating methods using concentrated sulfuric acid. Batch tests were performed to characterize the equilibrium sorption properties of new activated carbon in copper-containing aqueous solutions, while the sandy soil (aquifer) was assumed to be inert. Under the studied conditions, the Langmuir isotherm model gives a better fit for the sorption data of copper by activated carbon than other models. At a pilot scale, One-dimensional column experiments were performed, and an integrated model ba
... Show More