Preferred Language
Articles
/
bsj-7353
Nano composites of PAM Reinforced with Al2O3
...Show More Authors

         The aim of this investigation is to determine how different weight percentages of alumina nanoparticles, including 0.02, 0.04, and 0.06 percent wt, affect the physical characteristics of Poly Acrylamide (PAAM). Using a hot plate magnetic stirrer, 10 g of poly acrylamide powder was dissolved in 90 g of di-ionized distillate water for 4 hours to produce PAAM with a concentration of 0.11 g/ml. Four sections of the resulting solution, each with a volume of 20 ml, were created. Each solution was added independently with alumina nanoparticles in different ratios 0.0, 0.02, 0.04, and 0.06 to create four nano fluid solutions with different alumina nanoparticle contents based on each weight percent. The hand casting process for nanocomposites samples, which entailed pouring the prepared solution into an appropriate plastic mold, allowing it to cure for 24 hours, and then cutting the resulting thin film according to each test, was used to create the nano composited membranes. The tensile test was used to study tensile strength, Young's modulus, elongation, and toughness. Additionally, a test using Fourier transition infrared radiation (FTIR) was conducted to examine the chemical and physical connections between polyacrylamide and alumina nanoparticles. The morphology of the materials was examined using scan electron microscopy. The contact angles of samples were tested to limit the hydrophilicity behavior of these samples. To control the hydrophilicity behavior of these samples, the contact angles of the samples were evaluated. The results showed that including alumina nanoparticles into the PAAM matrix improves the mechanical characteristics of the resulting nanocomposites. Tensile strength increases from 1 GPa to 2.5 GPa with an increase in alumina nanoparticle content from 0 to 0.06 percent wt. For the same prior ratios, Young's modulus likewise increased, rising from 1.3 to 2 GPa. For the higher weight ratio of alumina nanoparticles (0.04 percent wt), toughness rises to 240 J/cm2. On the other hand, the addition of alumina nanoparticles increased the PAAM surface's contact angle from 55 degrees to 67 degrees, and it exhibited hydrophilic behavior

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Oxidative Desulfurization of Simulated Diesel Fuel by Synthesized Tin Oxide Nano-Catalysts Support on Reduced Graphene Oxide
...Show More Authors

   The modified Hummers method was applied to prepare graphene oxide (GO) from the graphite powder. Tin oxide nanoparticles with different loading (10-20 wt.%) supported on reduced graphene oxide were synthesized to evaluate the oxidative desulfurization efficiency. The catalyst was synthesized by the incipient wetness impregnation (IWI) technique. Different analysis methods like FT-IR, XRD, FESEM, AFM, and Brunauer-Emmett-Teller (BET) were utilized to characterize graphene oxide and catalysts. The XRD analysis showed that the average crystal size of graphene oxide was 6.05 nm. In addition, the FESEM results showed high metal oxide dispersions on the rGO. The EDX analysis shows the weight ratio of Sn is close to its theoretical weight.

... Show More
View Publication Preview PDF
Crossref (15)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
A Green Synthesis of Iron/Copper Nanoparticles as a Catalytic of Fenton-like Reactions for Removal of Orange G Dye
...Show More Authors

This research paper studies the use of an environmentally and not expensive method to degrade Orange G dye (OG) from the aqueous solution, where the extract of ficus leaves has been used to fabricate the green bimetallic iron/copper nanoparticles (G-Fe/Cu-NPs). The fabricated G‑Fe/Cu-NPs were characterized utilizing scanning electron microscopy, BET, atomic force microscopy, energy dispersive spectroscopy, Fourier-transform infrared spectroscopy and zeta potential. The rounded and shaped as like spherical nanoparticles were found for G-Fe/Cu‑NPs with the size ranged 32-59 nm and the surface area was 4.452 m2/g. Then the resultant nanoparticles were utilized as a Fenton-like oxidation catalyst. The degradation efficiency of

... Show More
View Publication Preview PDF
Scopus (30)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sun Jan 27 2019
Journal Name
Civil Engineering Journal
Effect of Size and Location of Square Web Openings on the Entire Behavior of Reinforced Concrete Deep Beams
...Show More Authors

This paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the dee

... Show More
Scopus (20)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
Effect of Maximum Size of Aggregate on the Behavior of Reinforced Concrete Beams Analyzed using Meso Scale Modeling
...Show More Authors

In this study, simply supported reinforced concrete (RC) beams were analyzed using the Extended Finite Element Method (XFEM). This is a powerful method that is used for the treatment of discontinuities resulting from the fracture process and crack propagation in concrete. The mesoscale is used in modeling concrete as a two-phasic material of coarse aggregate and cement mortar. Air voids in the cement paste will also be modeled. The coarse aggregate used in the casting of these beams is a rounded aggregate consisting of different maximum sizes. The maximum size is 25 mm in the first model, and in the second model, the maximum size is 20 mm. The compressive strength used in these beams is equal to 26 MPa.

The subje

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Case Studies In Construction Materials
Experimental and environmental investigations of the impacts of wood sawdust on the performance of reinforced concrete composite beams
...Show More Authors

View Publication Preview PDF
Scopus (17)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Jan 27 2019
Journal Name
Civil Engineering Journal
Effect of Size and Location of Square Web Openings on the Entire Behavior of Reinforced Concrete Deep Beams
...Show More Authors

This paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the dee

... Show More
View Publication
Crossref (20)
Crossref
Publication Date
Fri Dec 15 2017
Journal Name
Journal Of Baghdad College Of Dentistry
The Effect of Addition of Zirconium Nano Particles on Antifungal Activity and Some Properties of Soft Denture Lining Material
...Show More Authors

Background Microorganisms and fungal growth especially Candida albicans, on soft denture lining material are the most common problem which can lead to chronic mucosal inflammation. The aim of this study was to evaluate the effect of zirconium nanoparticles into acrylic-based heat cured soft denture lining material against Candida albicans, and the amount of zirconium ion release of soft liner/ZrNPs composite. Furthermore, evaluate shear bond strength after ZrNPs addition to soft liner. Materials and methods: Zirconium nanoparticles were added into acrylic-based soft denture liner in various percentages (1%, and 1.5% by weight). Two hundred and fifty specimens were arranged and isolated into four groups as per the test to be done The antifu

... Show More
View Publication Preview PDF
Crossref (16)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Some Properties of Concrete Containing Waste Brick As Partial Replacement Of Coarse Aggregate And Addition Of Nano Brick Powder
...Show More Authors
Abstract<p>The accumulation of construction and demolition waste is one of the major problems in modern construction. Hence, this research investigates the use of waste brick in concrete. Seven different concrete mixes were investigated in this study: a control concrete mix, three mixes with volumetric replacement (10, 20, and 30)% of natural aggregate with brick aggregate, and two mixes with the addition of nano brick powder at a percentage level of 5– 10% by weight of cementitious materials. And the last one was mixed with 10% nano brick and 10% coarse brick aggregate. The experimental results for the additive of nano brick powder showed an enhancement in mechanical properties (compressive, </p> ... Show More
View Publication Preview PDF
Scopus (12)
Crossref (11)
Scopus Crossref
Publication Date
Sat Jan 05 2019
Journal Name
Iraqi Journal Of Physics
The study of the bending property of the epoxy (Ep / MgO) and (Ep/SiO2) composites in natural conditions and after immersion in chemical solution
...Show More Authors

In this paper, a polymer-based composite material was prepared by hand Lay-up method consisting of epoxy resin as a base material reinforced by magnesium oxide powder once and silicon dioxide powder again and with different weight ratios (3, 6, 9 and 12) wt %. The three-point bending test was performed in normal conditions and after immersion in sulfuric acid. The results showed that the bending value decreased with the increase of the weighted ratio of the reinforcement material (MgO, SiO2). The Bending of samples reinforced by SiO2 was found to be less than the bending of samples reinforced by particles (MgO). For example, the bending of the SiO2 sample (0.32 mm) at the weighted ratio (3%) and for the MgO (0.18mm) sample at the weight

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
13th International Symposium On Fiber-reinforced Polymer Reinforcement For Concrete Structures Frprcs 13
CFRP Repairing System at Openings in Reinforced Concrete T-Beams Cracked by Impact Loads
...Show More Authors