Preferred Language
Articles
/
bsj-7353
Nano composites of PAM Reinforced with Al2O3
...Show More Authors

         The aim of this investigation is to determine how different weight percentages of alumina nanoparticles, including 0.02, 0.04, and 0.06 percent wt, affect the physical characteristics of Poly Acrylamide (PAAM). Using a hot plate magnetic stirrer, 10 g of poly acrylamide powder was dissolved in 90 g of di-ionized distillate water for 4 hours to produce PAAM with a concentration of 0.11 g/ml. Four sections of the resulting solution, each with a volume of 20 ml, were created. Each solution was added independently with alumina nanoparticles in different ratios 0.0, 0.02, 0.04, and 0.06 to create four nano fluid solutions with different alumina nanoparticle contents based on each weight percent. The hand casting process for nanocomposites samples, which entailed pouring the prepared solution into an appropriate plastic mold, allowing it to cure for 24 hours, and then cutting the resulting thin film according to each test, was used to create the nano composited membranes. The tensile test was used to study tensile strength, Young's modulus, elongation, and toughness. Additionally, a test using Fourier transition infrared radiation (FTIR) was conducted to examine the chemical and physical connections between polyacrylamide and alumina nanoparticles. The morphology of the materials was examined using scan electron microscopy. The contact angles of samples were tested to limit the hydrophilicity behavior of these samples. To control the hydrophilicity behavior of these samples, the contact angles of the samples were evaluated. The results showed that including alumina nanoparticles into the PAAM matrix improves the mechanical characteristics of the resulting nanocomposites. Tensile strength increases from 1 GPa to 2.5 GPa with an increase in alumina nanoparticle content from 0 to 0.06 percent wt. For the same prior ratios, Young's modulus likewise increased, rising from 1.3 to 2 GPa. For the higher weight ratio of alumina nanoparticles (0.04 percent wt), toughness rises to 240 J/cm2. On the other hand, the addition of alumina nanoparticles increased the PAAM surface's contact angle from 55 degrees to 67 degrees, and it exhibited hydrophilic behavior

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
Journal Of Engineering Geology And Hydrogeology
Assessing Pullout Resistance of Earth Reinforced Embankment Model
...Show More Authors

- The sandy soil with high gypsum content (usually referred to as gypseous soil) covers vast area in south, east, middle and west regions of Iraq, such soil possess a type of cohesive forces when attached with optimum amount of water, then compacted and allowed to cure, but losses its strength when flooded with water again. Much work on earth reinforcement was published which concentrate on the gain in bearing capacity in the reinforced layer using different types of cohesive or cohesion less soil and various types of reinforcement such as plastic, metal, grids, and synthetic textile. Little attention was paid to there enforce gypseous soil. The objective of this work is to study the interaction between such soil and reinforcement strips

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Mar 15 2024
Journal Name
Journal Of Baghdad College Of Dentistry
Assessment of the correlation between the tensile and diametrical compression strengths of 3D-printed denture base resin reinforced with ZrO2 nanoparticles
...Show More Authors

Background: The mechanical properties of 3D-printed denture base resins are crucial factors for determining the quality and performance of dentures inside a patient’s mouth. Tensile strength and diametral compressive strength are two properties that could play significant roles in assessing the suitability of a material. Although they measure different aspects of material behavior, a conceptual link exists between them in terms of overall material strength and resilience. Aim: This study aims to investigate the correlation between tensile strength and diametral compressive strength after incorporating 2% ZrO2 nanoparticles (NPs) by weight into 3D-printed denture base resin. Methods: A total of 40 specimens (20 dumbbell-shaped and

... Show More
Scopus (3)
Scopus Crossref
Publication Date
Wed Jun 18 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Comparison of regional bond strength of post space of fiber-reinforced post luted with two types of cements at different testing times
...Show More Authors

Back ground: This in vitro study was carried out to investigate the effect of post space regions (coronal, middle and apical), Time and the mode of polymerization (dual, self-cured) of the cements used on the bond strength between translucent fiber post and root dentin by using push-out test. Materials and Methods: Forty eight extracted mandibular first premolars (single root) were instrumented with ProTaper Universal system files (for hand use) and obturated with gutta percha for ProTaper and AH26® root canal sealer following the manufacturer instructions, after 24 hours post space was prepared using FRC postec® plus drills no.3 creating 8 mm depth post space. The prepared samples were randomly divided into two main groups (24 samples ea

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Effect of tempering on thermal analysis of Al-Ti-Si alloy and its composites
...Show More Authors

The investigation of the effect of tempering on thermal analysis of
Al-Ti-Si alloy and its composites with MgO and SiC particles was
performed. Thermal analysis was performed before and after
tempering by DSC scan. Optical microscopy was used to identify the
phases and precipitations that may be formed in base alloy and
composites. X-ray diffraction test indicated that the Al3Ti is the main
phase in Al-Ti-Si alloy in addition to form Al5Ti7Si12 phase. Some
chemical reactions can be occurred between reinforcements and
matrix such as MgO.Al2O3 in Al-Ti/MgO, and Al4C3 and Al(OH)3 in
Al-Ti/SiC composite. X-ray florescence technique is used to
investigate the chemical composition of the fabricated specimens.
H

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Preparation and Study of morphological properties of ZnO nano Powder
...Show More Authors

In this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder

 

View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Overview of seismic performance assessment of reinforced concrete buildings
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Aug 05 2024
Journal Name
Food And Bioprocess Technology
Development of an Innovative Reinforced Food Packaging Film Based on Corn Starch/Hydroxypropyl Methylcellulose/Nanocrystalline Cellulose Incorporated with Nanogel Containing Quercetin
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Jan 24 2019
Journal Name
Journal Of Engineering And Applied Sciences
Investigation of the Optical and Electrical Properties of Composites of PVA-PVP-PEG/ZnO Nanoparticles
...Show More Authors

Publication Date
Wed Jun 01 2022
Journal Name
Journal Of Water Process Engineering
Antibiotics adsorption from contaminated water by composites of ZSM-5 zeolite nanocrystals coated carbon
...Show More Authors

The presence of antibiotic residues such as ciprofloxacin (CIPR) in an aqueous environment is dangerous when their concentrations exceed the allowable. Therefore, eliminating these residues from the wastewater becomes an essential issue to prevent their harm. In this work, the potential of efficient adsorption of ciprofloxacin antibiotics was studied using eco-friendly ZSM-5 nanocrystals‑carbon composite (NZC). An inexpensive effective natural binder made of the sucrose-citric acid mixture was used for preparing NZC. The characterization methods revealed the successful preparation of NZC with a favorable surface area of 103.739 m2/g, and unique morphology and functional groups. Investigating the ability of NZC for adsorbing CIPR antibioti

... Show More
Crossref (38)
Crossref
Publication Date
Tue Apr 13 2021
Journal Name
Neuroquantology
Sintering Additives Effects on the Microstructure and Electrical Behavior of Yttrium Oxide Ceramic Composites
...Show More Authors

Ceramics type Yttrium oxide with Silicon carbide. were selected to investigate its sintered density, microstructure and electrical properties, after adding V2O5, of 100 nm grain size. Different weight percentages ranging from (0.01,0.02,0.03 and 0.04) were used. Dry milling applied for twelve hours. The pelletized samples were sintered at atmospheric of static air and at sintering temperature 1400 ˚C, for three hours. The crustal structure test shoes the phase which is yttrium silicon carbide Scanning electron microscopy, scan sintered microstructure. Samples after sintering were electrically investigated by measuring its capacitance, dielectric constant and their results showed increasing after added V2O5 particles at the combinat

... Show More
View Publication Preview PDF
Scopus Crossref