Green synthesis is depending on preparation of nano composited SiO2/V2O5 by using the modified sol-gel method depending on rice husk ash as a source for the extraction of silica gel and the product powder of nano composited SiO2/V2O5 characterization by many techniques such as X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), and N2 adsorptions/desorption isotherms (BET). This study also includs the biological effectiveness of SiO2/V2O5 and its effect on inhibiting bacterial growth after the prepared nanomaterial was applied to wound dressings, which gave a promising result for its use as topical dressings that remove microbes especially for burns and wounds patients, due to its high effectiveness in killing Gram-positive bacteria S.aurea positive bacteria at a concentration of 625 µg/mL, which is characterized by its resistance to many antibiotics. Antibiotic resistance is one of the problems that many researchers seek to solve this problem by providing more effective and safe antibiotics. Choosing silica extracted from a natural substance to reduce the toxicity resulting from the use of chemicals, as silica oxide is considered a non-toxic substance. Therefore, during preparation, care was taken to use chemicals in low concentrations to reduce toxicity. In vitro cytotoxic effects were studied of composited SiO2/V2O5 nanoparticles on Vero cell line 101 and skin cell line-A431were investigated at different concentrations. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to determine the cytotoxic effects of green synthesized nanopowders.
Objective. Glass-ionomer and resin-modified glass-ionomer cements are versatile materials with the ability to form a direct bond with tooth tissues. The aim of this study was to formulate a novel class of dental bio-interactive restorative material (pRMGIC) based on resin-modified glass-ionomer cements via the inclusion of an organophosphorus monomer, ethylene glycol methacrylate phosphate, with a potential to improve the mechanical properties and also function as a reparative restorative material. Methods. pRMGIC was formulated with modification of the resin phase by forming mixes of ethylene glycol methacrylate phosphate (EGMP; 0–40%wt) and 2-hydroxyethyl methacrylate monomer into the liquid phase of a RMGIC (Fuji II LC, GC Corp.).
... Show MoreCopper Zinc Sulphide (Cu0.5Zn0.5S) alloy and thin films were fabricated in a vacuum. Nano crystallized (CZS) film with thick 450±20 nm was deposit at substrates glasses using thermal evaporation technique below ~ 2 × 10− 5 mbar vacuum to investigated the films structural, morphological and optical properties depended on annealing temperatures ( as-deposited, 423, 523 and 623) K for one hour. The influences annealed temperature on structurally besides morphologically characteristics on these films were investigated using XRD and AFM respectively. XRD confirms the formation a mixed hexagonal phase of CuS-ZnS in (102) direction with polycrystalline in nature having very fine crystallites size varying from (5.5-13.09) nm. AFM analys
... Show MoreBackground: Anemia of chronic disease (ACD) occurs in the presence of chronic infection, inflammatory conditions or neoplastic conditions despite of adequate iron and vitamins storage. Gingivitis is the inflammation of the gingiva, periodontitis is the inflammation in the periodontium that extend deeper with loss of connective tissue attachment and supporting bone. The main pathogenesis of periodontal diseases and ACD is immune activation. Aims of study: Determine and compare the clinical periodontal parameters (plaque index (PLI), gingival index (GI), bleeding on probing (BOP), probing pocket depth (PPD) and clinical attachment level (CAL)). Evaluate the hematocrit (Hct) level, red blood cells (RBCs) count and white blood cells (WBCs) c
... Show MoreBackground The application of nanotechnology to biomedical surfaces is explained by the ability of cells to interact with nanometric features. The aim of this study was to consider the role of nanoscale topographic modification of CPTi dental implant using chemical etching method for the purpose of improving osseointegration. Materials and methods: Commercial pure titanium rod was machined into 20 dental implants. Each implant was machined in diameter about 3mm, length of 8mm (5mm was threaded part and 3mm was flat part). Implants were prepared and divided into 2 groups according to the types of surface modification method used: 1st group (10 implant) remained without nano surface modification (control), 2nd group include (10 implant) etche
... Show More